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Abstract: China’s growth miracle has been accompanied by a great leap forward in the development
of transport infrastructure. This study examines and compares impacts from the quantity, quality,
and structural aspects of transport infrastructure on regional economic growth in China as the country
approaches an upper-middle income status. We also incorporate government’s development strategies
into the framework for evaluating the growth effect of China’s transport infrastructure. Using a
consistent and robust dynamic panel data system generalized method of moments (system-GMM)
estimation for identification, we find strong evidence confirming that transport infrastructure
contributes to regional economic growth in China during the period 2007–2015, as the country
approaches its upper-middle income status. In particular, quality improvements in roads and
railways and the structural upgrading of transport infrastructure significantly contribute to growth.
However, we do not find that quantity expansion of the overall land transport network has a significant
impact. Moreover, government development strategies that defy local comparative advantages
not only detract from the growth rate but also potentially restrict the contribution of transport
infrastructure. Lastly, the regional heterogeneity for Western China may differ across transport modes,
particularly with respect to goods versus passenger transport and roadways versus railways.

Keywords: transport infrastructure; quality; structure; economic development level; development
strategy; dynamic panel system-GMM

1. Introduction

This study assessed the effects of the quantity, quality, and structural aspects of transport
infrastructure endowment upgrading on economic growth. Additionally, the study explored the
possibility of a relationship between government development strategies and the growth impact
from transport infrastructure. Since the 1990s, the World Bank has repeatedly emphasized that
policymakers should not exclusively focus on the quantity of infrastructure investments and that
improving the quality of infrastructure services is also vital. Moreover, the World Bank has found
that in the past, low operating efficiency, inadequate maintenance, and insufficient attention to users’
needs have all contributed to reducing the development impact of these investments. Therefore, it is
considered essential to improve the effectiveness of infrastructure investments as well as the efficiency
of infrastructure service provision. After analyzing and summarizing lessons learned from experiences
worldwide, the World Bank noted that infrastructure investment alone does not guarantee growth
and that when the overall economic policy conditions are unfavorable, the returns from infrastructure
investment decline [1]. In summary, the World Bank’s research has provided valuable guidance for
countries to develop infrastructure according to their own unique characteristics.
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China has experienced rapid economic growth and an expansion of its transport infrastructure
over the last 40 years. Since the initiation of reforms in 1978, the Chinese economy has maintained an
annual growth rate of 9.5% in real terms, with the rate doubling every eight years on average according
to the National Bureau Statistics of China (NBSC). China’s transport infrastructure has emerged at an
astonishing pace, growing from almost nothing to an extensive network of roadways, expressways,
railways, and high-speed rail (HSR), and it is now the most extensive in the world. As China has
successfully transitioned from a low-income country to an upper-middle income one with the world’s
second-largest economy (see Figure 1), the transport infrastructure endowment has diversified from
simple quantitative expansions (i.e., an increase in the length of roadways and railways) to quality
improvements (i.e., high-speed roadways and railways) and structural upgrading (i.e., increases in the
share of government expenditure to improve maintenance and service efficiency in the transport sector;
see Figures 2 and 3). These facts set an appropriate context for studying the causal impacts of China’s
transport infrastructure on its economic growth at different stages of development. The fundamental
questions are as follows. When China reaches upper-middle income status, how do different aspects
of transport infrastructure endowment upgrading contribute to regional economic growth? Is there
heterogeneity in the impact across these aspects? Further, what is the relationship between the transport
infrastructure growth impact and the government’s development strategies?
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Figure 2. Road, expressway, railway, and high-speed railway mileages. Source: National Bureau
Statistics of China (NBSC).



Sustainability 2020, 12, 5618 3 of 22

Sustainability 2020, 12, x FOR PEER REVIEW 3 of 23 

 

Figure 2.Road, expressway, railway, and high-speed railway mileages. Source: National Bureau 

Statistics of China (NBSC). 

 

Figure 3.Share of government expenditure in the transport sector, 2007–2015. Source: NBSC. 

This study contributes to the growing body of literature that estimates the economic impact of 

transport infrastructure projects. Recent contributions find that in developed countries, highways 

and civil aviation promote trade, increase growth, raise skill premia, stimulate innovation, and 

facilitate decentralization and urban formation [3–5]. See Redding and Turner [6] for an extensive 

survey. 

China’s evidence suggests that the transport infrastructure impact differs according to 

development levels and transport infrastructure attributes. For example, Demurger [7] estimated the 

impact of transport infrastructure quantity (railway, road, and inland navigable water network 

length per square kilometer) from 1985 to 1998, when China was a low-income country. The author 

found that the overall transport quantity had a positive effect on provincial growth, but the impacts 

decreased with the level of economic development. In a similar research period, Fan and Chan-Kang 

[8] found that from 1982 to 1999, low-quality roads (mostly rural) rather than high-quality ones 

(expressways) contributed more to GDP, urban GDP, and poverty reduction. Hong et al. [9] 

considered both the quantity and quality of transport infrastructure and showed that from 1998 to 

2007 (after China became a middle income country), land and water transport’s growth impacts were 

greater than those from airway transport. Lin [10] found that as China approached an upper-middle 

income level from 2008 to 2013, its HSR promoted urban employment and GDP. Other research has 

found that transport had zero or negative impacts on development outcomes. For instance, Faber [11] 

constructed hypothetical instruments and found that from 1997 to 2006, the National Trunk Highway 

0

100

200

300

400

500

600

1
9

6
2

1
9

6
8

1
9

7
3

1
9

7
8

1
9

8
3

1
9

8
8

1
9

9
3

1
9

9
8

2
0

0
3

2
0

0
8

2
0

1
3

2
0

1
8

Ye
ar

Mileage

Road/10,000km

Expressway/1000km

Railway/1000km

HSR /100km

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

2006 2008 2010 2012 2014 2016

Transport expenditure share

Figure 3. Share of government expenditure in the transport sector, 2007–2015. Source: NBSC.

This study contributes to the growing body of literature that estimates the economic impact of
transport infrastructure projects. Recent contributions find that in developed countries, highways and
civil aviation promote trade, increase growth, raise skill premia, stimulate innovation, and facilitate
decentralization and urban formation [3–5]. See Redding and Turner [6] for an extensive survey.

China’s evidence suggests that the transport infrastructure impact differs according to development
levels and transport infrastructure attributes. For example, Demurger [7] estimated the impact of
transport infrastructure quantity (railway, road, and inland navigable water network length per square
kilometer) from 1985 to 1998, when China was a low-income country. The author found that the overall
transport quantity had a positive effect on provincial growth, but the impacts decreased with the level
of economic development. In a similar research period, Fan and Chan-Kang [8] found that from 1982
to 1999, low-quality roads (mostly rural) rather than high-quality ones (expressways) contributed
more to GDP, urban GDP, and poverty reduction. Hong et al. [9] considered both the quantity and
quality of transport infrastructure and showed that from 1998 to 2007 (after China became a middle
income country), land and water transport’s growth impacts were greater than those from airway
transport. Lin [10] found that as China approached an upper-middle income level from 2008 to 2013,
its HSR promoted urban employment and GDP. Other research has found that transport had zero
or negative impacts on development outcomes. For instance, Faber [11] constructed hypothetical
instruments and found that from 1997 to 2006, the National Trunk Highway System reduced county
GDP growth. Qin [12] exploited an inconsequential units approach and found that from 2002 to 2009,
railway speed upgrading reduced county GDP. Feng and Wu [13] showed a negative productivity
effect from public infrastructure capital stocks across provinces from 1996 to 2015. Banerjee et al. [14]
used an instrumental approach and system-generalized method of moments (GMM) and determined
that from 1986 to 2006, the distance of a county from historical transport networks had no impact
on per capita GDP growth. In sum, most previous studies have used either public infrastructure
investments [15], transport investments [13], or roadway lengths [7] to measure transport infrastructure
endowments, but these studies do not capture effects from transport infrastructure quality. Among
studies considering both the quantity and quality of transport infrastructure, some identified an overall
impact but did not distinguish between the two effects [9].

In addition to the above-mentioned studies, a few papers have focused on infrastructure
maintenance and service, and most of the evidence has been based on cross-country analysis. In general,
maintenance is defined as those activities that allow public infrastructure to efficiently deliver the
outputs for which they were designed [16]. Devarajan et al. [17] examined a panel of 43 developing
countries and found that current public expenditures on infrastructure maintenance had a positive effect
on output. Rioja [18] modeled the determinants of the optimal share of GDP devoted to infrastructure
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repair and maintenance, and his quantitative analysis of data from seven Latin American countries
suggested that reallocating funds from new investments to maintenance positively affected GDP.
Kalaitzidakis and Kalyvitis [19] constructed an infrastructure-led growth model in which the durability
of public capital varied according to the maintenance expenditure, and they showed a beneficial
role for maintenance expenditure on public capital formation. Despite the consensus on the crucial
weight of infrastructure maintenance in the total public investment expenditure, empirical studies on
maintenance in developing countries (including China) have received much less attention due to data
unavailability [19].

This study also contributes to the literature on the roles of development policies or strategies
during countries’ early stages of economic development, e.g., Itskhoki and Moll [20] and Tinbergen [21].
In particular, Bruno et al. [22] and Lin [23,24] have provided a series of theoretical and empirical
analyses on development strategy impacts in China and other developing countries and transition
economies. These studies have argued that most less developed countries in the post-World War II
period adopted inappropriate development strategies—or comparative advantage-defying (CAD)
strategies—which focused on accelerating the growth of capital-intensive industries even though
the countries were capital scarce. Firms in industries with comparative disadvantages became
nonviable in open competitive markets, and governments needed to subsidize nonviable firms in
prioritized heavy-industry sectors through resource allocation interventions and market distortions [25].
Such development strategies helped shape development outcomes across regions in China. Based on
the relevant literature, we argue that if the government adopts a CAD strategy and distorts resource
allocation toward the capital-intensive sector, capital returns will be repressed, overall economic
conditions will be unfavorable, and returns to transport infrastructure endowment upgrading will
be lower. Nevertheless, existing empirical research has ignored the significant role of government
development strategies and their influence on transport infrastructure growth impacts in China.

In the context of the rapid rise of China to upper-middle income status, this study constructs a
unique dataset to describe the quantity, quality, and structural aspects of the transport infrastructure in
China during the period 2007–2015. The dataset has two important characteristics. First, it contains
information about regional government expenditures on maintenance in the transport sector, which
has been publicly available from the National Bureau Statistics of China (NBSC) since 2007. Following
Lin and Fu [26], we identify the share of regional government expenditure for transport that goes
toward the structural aspect of transport infrastructure. The second unique characteristic of our dataset
is that in contrast to recent studies that used insufficiently aggregated data, we follow Chakrabarti [27]
and Hong et al. [9] and select provinces as the geographic units to alleviate concerns about violating
the stable unit treatment value assumptions (SUTVA) [28]. This is based on the fact that the economic
impacts of the transportation infrastructure can leak beyond the borders of small economic areas such
as cities or counties leading to SUTVA violations, as emphasized in Redding and Turner [6], Rephann
and Isserman [29], and Baum-Snow and Ferreira [30].

Concerning the econometric methodology, we adopt the system generalized method of moments
(system-GMM) estimator for the dynamic panel data model, in which the unobserved province-specific
effects and potential endogeneity and measurement error of regressors are controlled for (held constant).
GMM was developed by Lars Peter Hansen in Hansen [31] as a generalization of the method of
moments, introduced by Karl Pearson in 1894. Hansen shared the 2013 Nobel Prize in Economics in part
for this work. The dynamic panel system-GMM estimator was developed by Arellano and Bover [32]
and Blundell and Bond [33], building on the first-difference GMM estimation approach proposed
earlier by Arellano and Bond [34]. Dynamic panel models permit the use of instrumental variables
(internal instruments) for all the explanatory variables so that more precise estimates can be obtained.
Thus, the dynamic panel system-GMM method has been widely applied in many areas for example in
examining the impact of financial development [35], other institutional improvement [36], etc. In recent
years, the method has been exploited to examine the relationship between transport infrastructure and
growth, including Chakrabarti [27], Farhadi [37], and Jiwattanakulpaisarn et al. [38]. Indeed, Bond et
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al. [39] and Hauk and Wacziarg [40] pointed out that the advantage of the dynamic panel system-GMM
estimator is that it can address concerns about identification, reverse causality, and to account for
the lagged responses of economic growth to any exogenous shock including transport infrastructure,
so to obtain consistent and unbiased parameters even in the presence of a measurement error and
endogenous right-hand-side variables. As such, we can reliably identify the impacts of the exogenous
component of the quantity, quality, and structural aspects of transport infrastructure on regional
economic growth in China within the same empirical framework. However, the above-mentioned
(external) instrumental variables in the transportation literature cannot achieve our research goal.

Lastly, we consider government development policies in the infrastructure impact evaluation
framework for China to investigate how development strategies affect the transport infrastructure
growth impact. Following Lin [23,24] and Lin and Wang [25], we adopt the technology choice index
(TCI; calculated by the ratio of value-added to labor ratio in manufacturing in a province over the total
value-added to labor force in the country) as a measure of the government’s inclination to employ a
development strategy that is geared toward capital-intensive sectors, in other words, the government’s
tendency to employ a CAD strategy. For details about government strategies, see Section 5.3.

We found evidence that when China reaches the upper-middle income level, quantity-related
bottlenecks in the transport infrastructure have mostly been eliminated; transport infrastructure
quality improvement and structural upgrading significantly contributes to regional economic growth.
However, we did not find a significant positive impact of the quantity increase in transport infrastructure
exclusively. Second, government development strategies that defy local comparative advantages
not only lead to declines in the per capita GDP growth rate but also potentially restrict the positive
contributions of transport infrastructure. Third, the regional heterogeneity regarding Western China
can differ across transportation modes as in goods versus passenger transport and roadways versus
railways. Our baseline findings are robust to various sets of control variables, the exclusion of possible
outliers, and external instrumental variables for transport infrastructure.

Our contributions to the existing literature are as follows. This study is the first formal assessment
of how the quantity, quality, and structure of transport infrastructure contribute to China’s economic
growth. Moreover, our study is the first to consider government development strategies within an
infrastructure impact evaluation framework. We highlight the relationship between a country’s level of
development and the multiple aspects of transport infrastructure and how government development
strategies can affect the impact of transport infrastructure on economic growth. Our results are
relevant for policymakers in developing countries and sustainable infrastructure development under
the paradigm of Industry 4.0 [41–43].

The rest of the paper is organized as follows. Section 2 reviews the process of transport infrastructure
upgrading in China. Section 3 describes the data and variables. Section 4 elaborates on the dynamic
panel data model and system-GMM estimation. Section 5 reports baseline estimation results and
robustness checks. Section 6 concludes this paper.

2. Transportation Infrastructure Endowment Upgrading in China

Since the founding of the People’s Republic of China (PRC), the transportation sector has
experienced three phases: Bottleneck restrictions, preliminary mitigation, and basic adaptation [44].
We review the three development stages for the two main forms of land transport: roadways and
railways. The two modes of transportation account for around 80% of the freight transport and 96% of
the passenger transport volume in China.

2.1. Before the 1990s

In the early days of the founding of P.R.C., China’s transportation industry was archaic. There were
only 80,700 km of roads and 21,800 km of railways. By 1978, the total mileage of the transportation
lines was only 1.235 million kilometers. After the economic reform and opening up in 1978, there was a
sharp increase in industrial and agricultural production, and severe deficiencies and bottlenecks began
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to emerge in the transportation sector. The result was that manufactured products could not be shipped
out, and one third of the country’s processing capacity was idle. In the mid-1980s, the government
began to focus on the construction of high-quality roads.

2.2. From the 1990s to 2007

Since the Eighth Five-Year Plan (1991–1995), investments in infrastructure have become a national
priority, leading to a substantial expansion of the transportation network. For instance, the “Five
Vertical and Seven Horizontal” national trunk highway lines were connected in 2007, 13 years ahead
of schedule. These lines brought roadway operating mileage to 3.583 million kilometers, 41 times
the mileage that existed in the early PRC. During the period 1997–2007, the Ministry of Railways
conducted six rounds of speed upgrading on existing railway lines and increased railway transport
capacity by 50% to ease the bottleneck constraints in China’s railway transport, increasing average
railway speeds from 48.1 to over 200 km/h. In 2003, the Qinhuangdao-Shenyang passenger-dedicated
HSR line was connected, easing passenger and freight congestion along the Shanhaiguan transport
corridor. According to the National Railway Administration of China, HSR lines are defined as railway
lines running at least with the average speed of 250 km/h or passenger dedicated intercity lines with the
average speed of at least 200 km/h. By the end of 2007, China’s railway mileage had reached 78,000 km.
At this time, land transportation bottlenecks in China were preliminarily mitigated.

2.3. Since 2007

China’s transportation sector implemented further reform policies to build an integrated
transportation infrastructure network, effectively eliminate poverty, and emphasize railway
construction in the central and western regions. By the end of 2018, China’s total roadway length
had reached 4.85 million kilometers and the expressway mileage jumped to 143,000 km, the highest
in the world. Moreover, rural roads connected 99.9% of towns and villages. In terms of railway
transport, China’s HSR network expanded dramatically with the opening of the Beijing–Tianjin intercity
HSR in 2008. By the end of 2018, the national railway operating mileage had reached 131,000 km,
with HSR exceeding 29,000 km, accounting for two thirds of the total HSR in the world. At this point,
China’s rapid passenger transport network based on HSR and supplemented by intercity railways was
initially complete.

3. Variables and Data

This section defines variables and describes data. We used province-level data to examine
the relationship between transport infrastructure development and economic growth in China. To
measure the quantity, quality, and structural aspects of transport infrastructure endowment upgrading,
we construct a number of transport infrastructure endowment indicators. In the meanwhile, following
Levine et al. [35], we control for different conditioning information sets in our growth regression model
to hold constant other factors associated with economic growth.

3.1. Variables

To investigate how the exogenous component of the quantity, quality, and structural aspects of
transport infrastructure endowment influences economic growth, we set up a growth regression model
with the annual growth rate of real per capita GDP as the dependent variable. The independent variables
include a variable representing the transport infrastructure development in the above-mentioned aspects
and a conditioning information set controlling for (holding constant) other economic growth factors.
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3.1.1. Indicators for Transport Infrastructure Endowment

Following the existing literature and according to the details of China’s transport infrastructure
development, we selected the available data to construct the following four transport infrastructure
endowment indicators:

• Quantity of transport infrastructure (Roadpc): Following Demurger [7] and Hong et al. [9], weuse
roadway and railway operation mileage per million people (Roadpc) to characterize the quantity
aspect of land transport infrastructure. We also separately use road or railway mileages per
million people or per square kilometer as alternative measures and replicate all the regressions.
Results still hold and are available upon request.

• Quality of transport infrastructure: We define the quality indicators for roadways and railways
as follows.

For roadways (Highroadshare): Fan and Chan-Kang [8] and Hong et al. [9] disaggregate road
infrastructure into different classes (expressway, Class 1–4, and substandard) to account for road quality
according to the Technical Standard for Highway Engineering in China. Following this literature,
we used the share of expressway over total roadway in terms of length (Highroadshare) to characterize
the quality of roadways.

For railways(HSR): Chinese trains are split into different types of services: HSR with speeds
above 200 km/h and conventional trains with speeds below 140 km/h, according to the China Railway
Technology Management Regulations. Hence, we disaggregated railway into HSR (including newly
constructed HSR and speed upgrading on existing railway lines) and conventional speed railway to
account for the quality of the railway transport. As data on provincial-level HSR mileages are not
publicly available, following the recent empirical literature about China’s HSR, e.g., Ke et al. [45],
Lin [10], and Qin [12], we first defined a “connected” dummy indicating whether city r of province i
was connected to HSR in year t. The dummy takes the value zero unless a city is connected to HSR
before the end of that year, in which case it takes the value one. Then, we sum up the total number of
times that all cities in province i during year t that were connected to HSR as the indicator for railway
transport quality (HSR).

• Structure of transport infrastructure (Trstuct1): According to the Ministry of Finance of China,
the huge public expenditure for the transport sector is used to improve the maintenance, operation,
and service efficiency of transportation covering highways, railways, waterways, and civil aviation.
For regional governments’ expenditures for the transport sector, the China Statistical Yearbook
only provides provincial public finance expenditure data and does not have relevant data on
provincial extra-budgetary or other government expenditures [46]. Following Devarajan et
al. [17], Kalaitzidakis and Kalyvitis [19], and Rioja [18], we usedthe share of regional government
expenditures for transport to characterize the government’s effort to increase operating efficiency
and provide adequate maintenance. Following Lin and Fu [26], we identified this indicator as
the structure of transport infrastructure (Trstuct1). Based on Barro [47], Lin and Fu [26] defined
the ratio of public expenditure to output as the structure of the public infrastructure endowment
and defined the proportion of public expenditure in a specific sector as the structure of the public
infrastructure endowment in that sector.

As China has transitioned from a low-income country to an upper-middle income one, the transport
infrastructure endowment has diversified from simple quantitative expansions to quality improvements
and structural upgrading. Moreover, most recent causal evidence shows that China’s expressways
and HSRs help generate new economic activities, e.g., Baum-Snow et al. [48], Ke et al. [45], Lin [10],
and Ke and Yan [49]. Additionally, cross-country evidence suggests that public expenditures on
maintenance have a positive effect on output and growth, e.g., Devarajan et al. [17] and Rioja [18].
As the quantity-related bottlenecks in the transport infrastructure have mostly been eliminated during
our research period 2007–2015, we expected positive coefficients for Highroadshare, HSR, and Trstuct1.
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The estimated sign for Roadpc is hard to predict a priori. It could be positive, but we do not expect
Roadpc to significantly contribute to the regional growth outcome.

3.1.2. Conditioning Information Sets

Following the common practice in the growth literature, e.g., Levine et al. [35], we used conditioning
information sets to capture the influence of factors other than the transport infrastructure development
indicators on economic growth. Specifically, we collected data on control variables commonly used in
the transportation-growth literature and the literature on China’s economic structure’s characteristics,
e.g., Demurger [7], Sala-i-Martin [50], and Yao [51]. To avoid multicollinearity and poor controls, and to
examine the sensitivity of our baseline results, we included the control variables in a stepwise fashion
and divided them into four different conditioning information sets defined as follows:

The basic conditioning information set (Basic set): the constant, the logarithm of initial per capita
real GDP (l.lgdppc), that is the per capita GDP in yuan of the previous year, to capture the convergence
effect, and the logarithm of initial level of education (Enroll), whichis the secondary school enrollment
ratio of the previous year, to capture human capital accumulation.

For the expected signs of the estimated coefficients, a negative coefficient wasexpected for l.lgdppc,
indicating the existence of conditional convergence among provinces. However, the estimated sign for
Enroll is hard to predict a priori, because the role of education in determining economic growth is an
area of dispute in the growth empirics as suggested by Sala-i-Martin [50].

The medium conditioning information set (Medium set): the basic set plus the ratio of fixed
asset investment formation to GDP (Investrate) to capture the physical capital accumulation impact
and the share of state-owned enterprises in fixed asset investment (SOE) as an inverse proxy for the
market economy reform process. So, the Medium set includes the constant, l.lgdppc, Enroll, Investrate,
and SOE.

For the Investrate, a positive coefficient wasexpected, as greater investment shares have been
shown to be positively related toeconomic growth [52]. For SOE, a negative coefficient is expected,
as in general the relatively poor performance of state-owned entities has been shown to hurt economic
growth [53].

The policy conditioning information set (Policy set): the medium set plus the ratio of export
values over GDP (Export) to measure the regional economy’s dependence on export, and the ratio of
government expenditure over GDP (Govsize) to measure the government size.

A negative coefficient on Exportwasexpected in our research period 2007–2015. As Asia is more
reliant on exports than any other region, it is bound to be hurt by the rich world’s worst recession since
the 1930s owning to the 2008 Financial Crisis, emphasized by The Economist. We expect a negative
coefficient for Govsize, as an excessively large government may crowd out private investment and be
harmful to growth performance [54].

The full conditioning information set (Full set): thepolicy set plus the share of GDP produced
in the agriculture sector (Agrishare) as an imperfect measure for the industry upgrading, and urban
population divided by total population (Urbanize) as an imperfect proxy for all types of geographical
characteristics related to the provincial economic structure [7].

We expected a negative coefficient for Agrishare, as fast economic growth was associated with
rapid structural change as industrialization proceeded [55]. If urban-biased policy is implemented
during our research period, then a positive coefficient on Urbanize is expected [7].

Due to the potential nonlinear relationship between economic growth and the explanatory
variables, we used the natural logarithms of these variables in regressions. For each of the four
indicators for transport infrastructure endowment described in Section 3.1.1, we run regressions for
the (1) Basic; (2) Medium; (3) Policy; and (4) Full conditioning information sets.
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3.2. Data

We collected a set of balanced panel data from all provinces, municipalities (directly under the
central government), and autonomous regions for the period 2007–2015 from the China Statistical
Yearbooks. As of 2007, railway speed upgrading information for all cities is from the People’s Republic
of China Railroad Atlas 2007. Newly constructed HSR information at the city-level wasfrom the China
Railway Yearbooks. Table 1 presents the descriptive statistics. We can see that there wasconsiderable
variation across provinces.

Table 1. Descriptive statistics.

Variables Obs. Mean Std. Dev Min Max

Growth 261 0.091 0.051 −0.086 0.232
Roadpc (kmper 1,000,000 people) 261 3539.000 2171.000 534.000 13,246.000

Highroadshare 261 0.026 0.015 0.004 0.073
HSR (times) 261 10.111 7.573 2.000 32.000

Trstuct1 261 0.061 0.027 0.007 0.161
lgdppc 261 8.796 0.498 7.481 9.851
Enroll 261 0.055 0.014 0.021 0.086

Investrate 261 0.690 0.211 0.254 1.328
SOE 261 0.299 0.102 0.114 0.560

Export 261 0.160 0.181 0.015 0.849
Govsize 261 0.221 0.097 0.087 0.627

Agrishare 261 0.109 0.056 0.004 0.290
Urbanize 261 0.529 0.139 0.282 0.896

TCI 261 7.819 3.366 1.185 15.439

Notes: 1. Real GDP is computed with the implicit deflator provided by the National Bureau Statistics of China
(NBSC). Other variables in real terms are deflated using the provincial overall retail price index based on the 1980
price; 2. Technology choice index (TCI) is calculated by the ratio of value-added to labor ratio in manufacturing in
a province over the total value-added to labor force in the country following Lin [23,24], and Lin and Wang [25];
and 3. Following the usual practice, Tibet is not included in the sample due to data inconsistency, and the data of
Chongqing is added to the Sichuan province.

4. Model and Estimation

An attraction of panel data is the possibility of consistent estimation of the fixed effects
model, which allows for unobserved heterogeneity that may be correlated with regressors [56].
Hence, to separately assess the influence of the quantity, quality, and structural aspects of transport
infrastructure endowment upgrading, we formulated the empirical growth model following Barro and
Sala-i-Martin [57] in a panel data context [58].

yi,t − yi,t−1 = (α− 1)yi,t−1 + βTransporti,t + δ′Xi,t + ηi + λt + εi,t, for i = 1, . . . , N, t = 2, . . . , T (1)

where yi,t is the logarithm of per capita real GDP for province i in year t. yi,t−1 is the lagged logarithm
of per capita real GDP. Transporti,t, the main variable of interest in this study, equals eitherthe
quantity of transport infrastructure (Roadpc), the quality of roadway transport (Highroadshare),
the quality of railway transport (HSR), or the structure of transport infrastructure (Trstuct1) as
described in Section 3.1.1. That is, to identify the impact of the quantity of transport infrastructure,
Transporti,t equals Roadpc; to identify the impact of the quality of roadway transport, Transporti,t equals
Highroadshare; to identify the impact of the quality of railway transport, Transporti,t equals HSR;
and to identify the impact of the structure of transport infrastructure, Transporti,t equals Trstuct1.Xi,t is
a conditioning information set (Basic set, Medium set, Policy set, and Full set). It represents a vector of
conditioning information that controls for (holding constant) other factors associated with economic
growth, but excluding yi,t−1 that Equation (1) has already controlled for. Accordingly, α, β, and δ are
the parameters and vectors of parameters to be estimated.
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ηi is the fixed effect thatcontrols for (holding constant) the unobserved time-invariant
province-specific characteristics [59]. In the transport-growth literature, such unobserved time-invariant
heterogeneity is typically climate, topography, history, etc., which influence both growth performance
and transport infrastructure development process hence lead to omitted variables bias. λt, denotes the
unobserved time effect controlling for (holding constant) common shocks (to all provinces) originated
from macroeconomic, political, or technological sources [56]. Both the province- and year-effects may
also reflect province-specific and period-specific components of measurement errors [58]. Lastly, εi,t is
the idiosyncratic error term. To account for possible heteroskedasticity, standard errors are clustered at
the province level. Equation (1) guarantees that our estimates, in particular for β, are not contaminated
by aggregate shocks and trends common to all provinces or by time-invariant provincial factors such
as climate, geography, history, and culture.

However, given the potential for unobserved time-varying factors and reverse causality that can
induce endogeneity bias and the lagged responses of economic development to exogenous shocks, we
used the system-GMM estimator for dynamic panel data model proposed by Arellano and Bond [34];
Arellano and Bover [32], and Blundell and Bond [33]. GMM is a generic method for estimating
parameters in statistical models. There are several advantages of using the GMM estimator for
the dynamic panel data model. First, it enables us to control for the unobserved province-specific
effects, ηi, by treating initial efficiency as time-invariant fixed effects and eliminate its influence through
a time-dimensional transformation. More importantly, we can use appropriate lags of the independent
variables as (internal) instrumental variables to deal with possible endogeneity in the regressors.
Hence, we can reliably examine the impacts of the exogenous component of the quantity, quality, and
structural aspects of transport infrastructure on regional economic growth in China at the same time
and within the same empirical framework. In fact, the system-GMM method has been widely applied,
particularly to identify transport infrastructure impacts in empirical growth research, for example
Chakrabarti [27], Farhadi [37], Jiwattanakulpaisarn et al. [38], and Zhang and Fan [60].

Specifically, estimating Equation (1) is equivalent to estimating the dynamic panel data model:

yi,t = αyi,t−1 + βTransporti,t + δ′Xi,t + ηi + λt + εi,t, for i = 1, . . . , N, t = 2, . . . , T (2)

We take the first difference of Equation (2) to eliminate, ηi, the unobserved time-invariant
province-specific characteristics:

yi,t − yi,t−1 = α(yi,t−1 − yi,t−2) + β(Transporti,t − Transporti,t−1)+

δ′(Xi,t −Xi,t−1) + (λt − λt−1) + (εi,t − εi,t−1)
(3)

Note that in Equation (3), we need instrumental variables to deal with two issues: (a) the
correlation between εi,t − εi,t−1 and yi,t−1 − yi,t−2 and (b) the endogeneity of Transporti,t − Transporti,t−1

and other growth predictors [51]. A simple ordinary least squares regression with two-way fixed
effects (FE-OLS) cannot generate unbiased estimates in this situation. The system-GMM estimator
building on the first-difference GMM estimator is proposed to address these problems in dynamic
panel data modeling [61].

In system-GMM, we estimated the differenced Equation (3) and level Equation (2) simultaneously.
The suitable instruments for Equation (3) are lagged explanatory variables. The first-differenced GMM
estimator uses lagged explanatory variables as the instrumental variables under two assumptions.
First, εi,t, the idiosyncratic error is not serially correlated. Second, variables contained in Xi,t are weakly
exogenous [58]. For level Equation (2), the suitable instruments are the lagged differences of the
explanatory variables. To ensure the validity of these additional instrumental variables, one more
assumption needs to be made, whichis the first differences of the independent variables in Equation (2)
that are uncorrelated with ηi [58]. By using instruments from within the available dataset, this approach
efficiently addresses the correlations described in (a) and (b). The system-GMM model is also estimated
under the assumption of second-order autocorrelation by increasing the lags of instruments one
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additional time period in both the level and differenced equations [27]. Bond et al. [39] and Hauk and
Wacziarg [40] pointed out that the potential for obtaining consistent parameter estimates, even in the
presence of measurement error and endogenous right-hand-side variables, is a considerable strength
of the system-GMM approach in the empirical growth research.

To use the system-GMM estimator, two criteria must be satisfied: The test for serial correlations in
the first-difference error (εi,t − εi,t−1) and the Hansen test for over-identification restrictions. The first
test aims to check if serial correlation exists in the error terms. The Hansen test evaluates the validity
of the instruments by checking the exogeneity conditions. Furthermore, to alleviate the instrument
proliferation problem, we followed theRoodman [62] approach to both collapse instruments and use
one or two lags instead of all the available lags for instruments in system-GMM estimators.

5. Estimation Results

5.1. FE-OLS Estimation

As a starting point, Table 2 reports the results from a static panel estimator FE-OLS of Equation (1)
under the four conditioning information sets (Basic set, Medium set, Policy set, and Full set) defined in
Section 3.1.2. As expected, the coefficients of all four transport infrastructure endowment indicators
(Roadpc, Highroadshare, HSR, and Trstuct1) described in Section 3.1.1 werepositive. Only coefficients
on the structure of transport infrastructure endowment (Trstuct1) werestatistically significant at the
10% level, suggesting that growth wassignificantly higher when a province spends a larger share of
public expenditure on the transport sector to improve maintenance, operation, and service efficiency.

Table 2. Transport infrastructure and growth: ordinary least squares regression with two-way fixed
effects (FE-OLS).

Dependent Variable Per Capita Real GDP Growth Rate

Roadpc Highroadshare HSR Trstuct1

Conditioning information set (1) (2) (3) (4)

Basic
Coefficient 0.016 0.004 0.006 0.023 *

Standard error (0.013) (0.006) (0.008) (0.012)

Medium
Coefficient 0.017 0.004 0.006 0.023 *

Standard error (0.013) (0.007) (0.008) (0.013)

Policy Coefficient 0.016 0.005 0.005 0.023 *
Standard error (0.013) (0.007) (0.007) (0.013)

Full
Coefficient 0.016 0.009 0.005 0.024 *

Standard error (0.013) (0.007) (0.007) (0.013)

Notes: 1. Robust standard errors clustered by province in brackets; 2. Year dummies are included in all regressions;
3. The number of observations is 261; and 4. * p < 0.10.

Nevertheless, we could not presume that the fixed effect regressions necessarily estimate the
causal effect of transport infrastructure, as there are always unobserved time-varying factors that
can affect both growth and transport development. Additionally, there is the potential reverse effect.
To further correct for this endogeneity and reliably identify the impact of the exogenous components
of the various aspects of the transport infrastructure development on economic growth, we followed
Chakrabarti [27], Farhadi [37], Jiwattanakulpaisarn et al. [38], and Zhang and Fan [60], and used the
system-GMM approach. Specifically, we used the lagged observations of all the growth predictors
as internal instruments in a dynamic panel data system-GMM framework to obtain consistent and
efficient estimates.

5.2. System-GMM Estimation

Table 3 reports the system-GMM estimates of Equations (2) and (3) with the policy conditioning
information setshown in columns(1)–(4) and the full conditioning information set shown in columns
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(5)–(8), respectively. In the system-GMM estimations, all estimated standard errors werecorrected for
heteroskedasticity, and year dummies wereincluded in all regressions. The initial level of per capita
real GDP wastreated as a predetermined variable while the four transport infrastructure endowment
indicators (Roadpc, Highroadshare, HSR, and Trstuct1), human capital accumulation, investment rate,
and other control variables werepotentially endogenous variables.

Table 3. Transport infrastructure and growth: System-GMM (Policy set and Full set).

Variables

Dependent Variable: Per Capita Real GDP Growth Rate

Policy Set Full Set

(1) (2) (3) (4) (5) (6) (7) (8)

Roadpc 0.016 0.060
(0.033) (0.050)

Highroadshare 0.039 ** 0.045 *
(0.018) (0.026)

HSR
0.036 ** 0.039 *
(0.016) (0.023)

Trstuct1
0.067 ** 0.072 *
(0.030) (0.042)

L.lgdppc −0.036 −0.088 −0.019 −0.164 ** −0.043 −0.040 0.255 −0.233
(0.064) (0.060) (0.050) (0.079) (0.150) (0.107) (0.424) (0.148)

Enroll
0.088 −0.092 0.012 −0.204 ** 0.160 −0.065 0.029 −0.065

(0.066) (0.072) (0.069) (0.091) (0.170) (0.100) (0.100) (0.172)

Investrate
−0.040 0.018 0.057 0.038 0.114 0.048 0.002 0.151
(0.058) (0.064) (0.044) (0.065) (0.086) (0.079) (0.173) (0.185)

SOE
−0.112 ** −0.020 0.050 0.002 −0.086 −0.067 −0.002 0.009

(0.054) (0.053) (0.050) (0.047) (0.079) (0.063) (0.061) (0.113)

Export −0.040 −0.033 −0.015 −0.010 −0.061 ** −0.035 −0.023 −0.080
(0.027) (0.022) (0.015) (0.021) (0.028) (0.026) (0.041) (0.051)

Govsize
0.038 −0.008 0.027 −0.085 −0.051 0.079 0.042 −0.063

(0.059) (0.087) (0.063) (0.089) (0.162) (0.113) (0.168) (0.148)

Agrishare −0.155 * 0.011 −0.037 −0.117
(0.083) (0.030) (0.123) (0.088)

Urbanize
−0.061 0.085 −0.659 0.236
(0.229) (0.181) (0.672) (0.316)

Constant
−0.265 0.571 0.251 0.937 −0.064 0.000 −2.633 1.738
(0.504) (0.460) (0.314) (0.614) (1.422) (0.013) (3.723) (1.666)

Hansen test p value 0.08 0.06 0.05 0.04 0.16 0.02 0.17 0.06
Difference Hansen J test 0.83 0.77 0.08 0.13 0.17 0.08 0.21 0.13

AR(1) test 0.04 0.08 0.03 0.21 0.03 0.13 0.02 0.24
AR(2) test 0.24 0.19 0.05 0.93 0.52 0.23 0.52 0.53

No. of Instruments 22 22 22 22 26 26 26 26

Notes: 1. Robust standard errors clustered by province in brackets; 2. Year dummies are included in all regressions;
3. The number of observations is 232; 4. We report p-value for AR(1) and AR(2) tests; 5. Tests and estimation results
from collapsed instruments with the basic and medium conditioning information sets are in the working paper
version of this paper and are available upon request; and 6. * p < 0.10; ** p < 0.05.

Table 3 suggests that our system-GMM estimations werevalid. The insignificance of all the AR(2)
test results implies that there wasno second-order serial correlation of the error term in Equation (3)
for all the regression models. The insignificance of the Hansen J test and the difference Hansen J test
results together suggest the satisfaction of orthogonal conditions. There wasno instrument proliferation
problem as instrument counts ranged between 22 and 24.

For the key variables of interest, Table 3 shows that, as expected, the coefficients of all the
four transport infrastructure endowment indicators (Roadpc, Highroadshare, HSR, and Trstuct1)
werepositive in our research period. Three werestatistically significant: the quality of roadway
transport (Highroadshare); the quality of railway transport (HSR); and the structure of transport
infrastructure (Trstuct1). The results werenot only consistent with the most recent evidence that
China’s expressways and HSRs generate new economic activities [10,45,48,49], but are also in line
with cross-country evidence that current public expenditures on maintenance have a positive effect on
output and growth [17,18]. In addition, as expected, the coefficients on the transport infrastructure
quantity indicator (Roadpc) werestatistically insignificant, which wasin line with the FE-OLS estimates
indicating that exclusively the quantity expansion of the transport network didnot have a significant
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impact on growth. Obviously, the finding runs contrary to the evidence in the early transport literature,
for example, Demurger [7], and Fan and Chan-Kang [8]; however, is consistent with our conjecture.
We argued that different aspects of transport infrastructure have heterogeneous impacts on growth
depending on the economic development level. The research period in Demurger [7] and Fan and
Chan-Kang [8] reflected China’s low-income stage. In the 1980s and 1990s, the transport infrastructure
was still facing bottleneck constraints and the average rate of urbanization was only 27%. At that time,
transport infrastructure quantity and low-quality roads were the key factors in regional economic
growth. Meanwhile, our study focuses on the period after 2007, when China was approaching
upper-middle income status with an average urbanization rate exceeding 50%. During this period,
an approach that focused solely on the quantity expansion of the existing transport infrastructure
would not even come close to achieving economic development and meeting public needs for more
efficient transport services. At this level of development, the rapid development of highly efficient
transportation infrastructure—reflected by quality and structure upgrading—becomes the driving
force for economic growth.

Most control variables show expected signs although they are not always statistically significant.
The coefficients of the lagged per capita real GDP (l.lgdppc) weremostly negative and smaller
than one, suggesting evidence of conditional convergence. The coefficients of industry upgrading
(Agrishare)werenegative, consistent with Ding and Knight’s [55] finding. The estimated coefficients on
other variables wereinsignificant.

Lastly, Baum-Snow et al. [48] emphasized that implicit evidence for the process through which
infrastructure investments are assigned can plausibly be obtained by comparing the OLS coefficients
and instrumental variable/GMM estimates. We found that the system-GMM estimates (Table 4)
weremostly larger than the FE-OLS estimates (Table 3), which is consistent with the findings in
Baum-Snow [3] and Duranton and Turner [4] in the United States. Thus, any bias served to bias
the impact of infrastructure endowment downward. The results suggest that in our research period,
the equilibrium allocation process assigned transport infrastructure to locations with slower growth
rates rather than to randomly selected locations.

Table 4. Infrastructure and growth: System-GMM (Policy set). Robustness checks with development
strategies measured by TCI.

Dependent Variable: Per Capita Real GDP Growth Rate

With TCI With TCI and Infrastructure Interaction

Variables (1) (2) (3) (4) (5) (6) (7) (8)

Railpc −0.032 −0.011
(0.027) (0.030)

Railpc × TCI 0.094
(0.061)

Highroadshare 0.032 * 0.036 *
(0.017) (0.020)

Highroadshare × TCI −0.021
(0.035)

HSR
0.052 * 0.048 **
(0.029) (0.022)

HSR × TCI
−0.019
(0.028)

Trstuct1
0.090 *** 0.100 ***
(0.027) (0.033)

Trstuct1 × TCI
−0.040
(0.040)

L.lgdppc 0.023 −0.174 ** −0.051 −0.223 *** 0.037 −0.159 * −0.093 −0.254 ***
(0.067) (0.081) (0.092) (0.074) (0.082) (0.085) (0.096) (0.065)
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Table 4. Cont.

Dependent Variable: Per Capita Real GDP Growth Rate

With TCI With TCI and Infrastructure Interaction

Variables (1) (2) (3) (4) (5) (6) (7) (8)

Enroll
0.122 −0.095 0.129 −0.164 0.130 * −0.077 0.142 * −0.150

(0.087) (0.090) (0.091) (0.107) (0.071) (0.097) (0.081) (0.104)

Investrate
0.019 0.090 ** 0.043 0.122 * 0.046 0.101 ** 0.039 0.063

(0.056) (0.040) (0.082) (0.068) (0.063) (0.045) (0.128) (0.061)

SOE
−0.090 −0.037 0.011 −0.030 −0.080 −0.040 0.010 −0.007
(0.056) (0.066) (0.074) (0.055) (0.059) (0.066) (0.064) (0.043)

Export −0.062 ** −0.024 −0.054 ** −0.019 −0.062 ** −0.027 −0.047 −0.014
(0.026) (0.019) (0.026) (0.023) (0.025) (0.018) (0.028) (0.027)

Govsize
0.032 −0.038 −0.005 −0.117 −0.004 −0.029 −0.053 −0.177 *

(0.066) (0.110) (0.095) (0.104) (0.078) (0.110) (0.082) (0.090)

TCI
−0.080 * −0.085 ** −0.061 −0.098 ** −0.038 −0.083 ** −0.081 * −0.101 **
(0.041) (0.032) (0.063) (0.037) (0.073) (0.034) (0.045) (0.037)

Hansen test p value 0.11 0.04 0.08 0.59 0.31 0.04 0.09 0.73
Difference Hansen J test 0.11 0.13 0.64 0.69 0.27 0.06 0.51 0.82

AR(1) test 0.03 0.12 0.01 0.16 0.03 0.12 0.01 0.16
AR(2) test 0.12 0.42 0.18 0.94 0.78 0.46 0.23 0.88

No. of Instruments 23 23 23 23 24 24 24 24

Notes: 1. Robust standard errors clustered by province in brackets; 2. Year dummies are included in all regressions;
3. The number of observations is 232; 4. We report ap-value for AR(1) and AR(2) tests; and 5. To construct an
indicator capturing whether the regional development strategy falls into a comparative-advantage-defying (CAD)
or comparative-advantage-following (CAF) category at the provincial level, following Lin [23] and Bruno et al. [22],
we use the technological choice index (TCI), TCIi,t = (AVMi,t/LMi,t)/(GDPi,t/Li,t). Here, AVMi,t is the value added
of manufacturing industries of province i at year t. GDPi,t is the total added value of the whole nation. LMi,t is the
labor in the manufacturing industry, and Li,t is the total labor force. Therefore, we expect a higher TCI value when a
province follows CAD strategy by investing in the capital-intensive heavy industry than otherwise; 6. TCI values
are specified as the difference from the sample mean; and7. For brevity, Table 4 only reports results with the policy
conditioning information set. Results with the other conditioning information sets are similar and available upon
request; 8. * p < 0.10; ** p < 0.05; *** p < 0.01.

5.3. Robustness Checks

We conducted additional robustness checks for development strategies, regional-biased policy,
political-biased policy, and external instrumental variables for transport infrastructure.

5.3.1. Development Strategies

One concern wasthat the impact of the infrastructure endowment upgrading could be confounded
by the government’s development strategies. We also wanted to test whether the contribution of
infrastructure endowment upgrading depends on the extent to which development strategies defy
local comparative advantages. If the government adopts a CAD strategy, distorting resource allocation
toward the capital-intensive sector, the capital return is repressed and hence, aggregate economic growth
tends to be low. Moreover, the more distorted the regional economy is away from its comparative
advantage, the more unfavorable are the overall economic conditions, and the lower the returns to
transport infrastructure quality and structure upgrading.

The basic idea that growth is spurred when a country or region follows a development strategy
consistent with its comparative advantages and endowment structure is intuitively and theoretically
appealing. However, it is difficult to test. To construct an indicator that captures whether the regional
development strategy falls into a CAD or comparative advantage following (CAF) category at the
provincial level, we followed Lin [23] and Bruno et al. [22] and used the technological choice index (TCI):

TCIi,t =
AVMi,t/LMi,t

GDPi,t/Li,t
(4)

Here, AVMi,t is the valueadded of manufacturing industries in province i at year t; GDPi,t is the
total added value of the whole nation; LMi,t is the labor in the manufacturing industry; and Li,t is the
total labor force. Therefore, we expected a higher TCI value when a province follows a CAD strategy
and invests in a capital-intensive heavy industry than otherwise. Specifically, the numerator of TCI
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will be relatively larger in contexts where manufacturing firms have larger market shares. This is
owing to governments’ interventions, where subsidized credit access, inputs, and supernormal profits
lead to huge investments into capital, and the value-added generated by that sector is above what it
would be otherwise. Less labor will be absorbed by the capital-intensive sectors, further inflating the
value-added to labor ratio in the supported sector [22]. The estimated coefficient of TCI is expected to
be negative in the empirical growth regression.

First, we included TCI in Table 4, columns (1)–(4), with the policy conditioning information set.
Clearly, our system-GMM estimations werevalid and it is notable that the earlier results for transport
infrastructure in Table 3 wereall robust to the inclusion of TCI. The coefficients on TCI werenegative
and statistically significant, as expected. Growth waslower when a province followed a CAD strategy.
This is in line with existing cross-country studies and studies of China in the development strategy
literature, e.g., Bruno et al. [22], Lin [24], and Lin and Wang [25].

Further, to test whether the impact of transport infrastructure upgrading on growth varies
across provinces according to the extent to which regional development strategies defy comparative
advantages, we further added the interaction term between TCI and a transport infrastructure
endowment indicator. In these interaction terms, the TCI values are specified as their difference from
the sample mean [63]. Thus, the coefficient of the transport infrastructure indicator represents the
partial effect of the transport infrastructure endowment upgrading on per capita GDP growth at the
mean value of TCI.

Table 4, columns (5)–(8), shows the system-GMM estimates with the policy conditioning
information set. Clearly, the system-GMM estimates werevalid. The coefficients on TCI wereall
negative and statistically significant in columns (6)–(8), as in columns (1)–(4). Our earlier results for
the four transport infrastructure indicators (Roadpc, Highroadshare, HSR, and Trstuct1) all hold.

Notably, for those transport infrastructure endowment indicators having significantly positive
relationships with regional economic growth (Highroadshare, HSR, and Trstuct1), the coefficients on
their TCI interaction terms wereall negative. These results support our earlier conjecture that the
greater the deviation from the local comparative advantage (higher TCI), the lower the contribution of
transport infrastructure quality and structure upgrading on regional economic growth. Nevertheless,
the coefficients on the interaction terms werestatistically insignificant. The finding indicates that at the
national level, 40 years of CAF strategy in China has created favorable overall economic conditions that
ensure that transport infrastructure endowment upgrading can promote growth at the aggregate level.

5.3.2. Regional-Biased Policy

To rule out concerns that our results are confounded by regionallybiased policies or regional
favoritism [12,48], in this robustness check, we introduced a regional dummy variable to indicate
the more developed eastern regions of China and the less developed western region, respectively.
Table 5, columns (1)–(4) and (5)–(8), reports the results withthe policy conditioning information
set. Clearly, adding a regional dummy does not change our conclusions, suggesting that the strong
connections between the quality of roadway transport (Highroadshare), the quality of railway transport
(HSR), the structure of transport infrastructure (Trstuct1), and regional growth performance were not
associated with whether a province was in the east or west.
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Table 5. Transport infrastructure and growth: System-GMM (Policy set). Robustness checks with
regional dummy.

Dependent Variable: Per Capita Real GDP Growth Rate

Variables (1) (2) (3) (4) (5) (6) (7) (8)

Roadpc 0.023 0.019
(0.031) (0.038)

Highroadshare 0.041 ** 0.040 **
(0.018) (0.017)

HSR
0.045 * 0.029 *
(0.025) (0.017)

Trstuct1
0.070 * 0.050 **
(0.038) (0.022)

East dummy −0.004 −0.011 0.081 −0.096
(0.053) (0.068) (0.120) (0.108)

West dummy 0.053 0.063 0.004 0.042
(0.041) (0.047) (0.026) (0.049)

Hansen test p value 0.12 0.04 0.69 0.08 0.12 0.06 0.06 0.05
Difference Hansen J test 0.82 0.13 0.86 0.12 0.79 0.75 0.05 0.26

AR(1) test 0.05 0.06 0.05 0.09 0.05 0.06 0.02 0.14
AR(2) test 0.27 0.19 0.16 0.8 0.31 0.16 0.07 0.61

No. of Instruments 23 23 23 23 23 23 23 23

Notes: 1. Robust standard errors clustered by province in brackets; 2. Year dummies are included in all regressions;
3. The number of observations is 232; 4. We report the p-value for AR(1) and AR(2) tests; and 5. In columns (1)–(6),
the east dummy equals 1 for the eleven provinces in Eastern China, including Beijing, Tianjin, Hebei, Liaoning,
Shanghai, Jiangsu, Zhejiang, Fujian, Shandong, Guangdong, and Hainan. Otherwise, the east dummy equals 0;
6. In columns (7)–(12), the west dummy equals 1 for the eleven provinces in Western China including Sichuan,
Guizhou, Yunnan, Shanxi, Gansu, Qinghai, Xinjiang, Tibet, Ningxia, Inner Mongolia, and Guangxi. Otherwise, the
west dummy equals 0. Tibet is excluded from the sample due to missing data;7. For brevity, Table 5 only reports
results with the policy conditioning information set. Results with the other conditioning information sets are similar
and available upon request; 8. * p < 0.10; ** p < 0.05.

Although a regionallybiased policy would not bias our baseline results, we recognized that our
estimates of the causal effects of transport infrastructure endowment on growth performance mightmask
heterogeneity between the east and west [48]. One might expect transport infrastructure upgrading
to have a greater effect in more developed eastern coastal regions, as there is greater passenger and
freight mobility there than in the inland regions. However, a severe transport infrastructure shortage
has long existed in less-developed Western China, which has also had faster growth potential. Hence,
one might also expect that transport infrastructure endowment upgrading tends to have a greater
impact on western regions when these bottlenecks are overcome.

Following Baum-Snow et al. [48], we examine the extent to which a regional heterogeneous
response is important for our results by estimating versions of our baseline regressions from Equation (3)
by interacting the transport infrastructure endowment indicators with the regional dummy. We found
that we could break China up into a maximum of two regions: the west and the remainder of
the country.

Table 6, columns (1)–(4), summarizes the results withthe policy conditioning information set.
Clearly, our earlier findings regarding the impact of the quantity, quality, and structural attributes of
transport infrastructure wererobust to this regional heterogeneity test. The coefficients on the interaction
terms between the west dummy and the quality of roadways (Highroadshare), quality of railways
(HSR), and the structure of transportation infrastructure (Trstuct1) werenegative but only significant
for HSR. This finding indicates that the contribution of transport infrastructure quality upgrading for
passenger-dedicated HSR on regional growth wassignificantly lower in Western China than in Eastern
and Central China. This result wasconsistent with the fact that Western China comprises of remote areas
with sparsely distributed populations and a less developed economy resulting in insufficient passenger
flows and a relatively poor profitability of the HSR as emphasized by the World Bank [64].These results
suggest that although transport infrastructure endowment upgrading has significantly positive growth
impacts, regional heterogeneity in Western China could differ across transport modes, particularly for
goods transport versus passenger transport and roadways versus railways.
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Table 6. Transport infrastructure and growth: System-GMM (Policy set). Robustness check with the
regional dummy and its interaction term with infrastructure.

Dependent Variable: Per Capita Real GDP Growth Rate

Variables (1) (2) (3) (4)

Roadpc −0.013
(0.028)

Highroadshare 0.041 **
(0.017)

HSR 0.075 **
(0.033)

Trstuct1 0.059 ***
(0.021)

Roadpc ×west 0.010
(0.009)

Highroadshare ×west −0.013
(0.010)

HSR ×west −0.020 *
(0.011)

Trstuct1 ×west −0.020
(0.020)

Hansen test p value 0.04 0.09 0.65 0.05
Difference Hansen J test 0.11 0.06 0.54 0.66

AR(1) test 0.04 0.06 0.02 0.13
AR(2) test 0.21 0.26 0.29 0.55

No. of Instruments 24 24 24 24

Notes: 1. Robust standard errors clustered by province in brackets; 2. Year dummies are included in allregressions;
3. The number of observations is 232; 4. We report ap-value for AR(1) and AR(2) tests; and 5. The West dummy
equals to 1 for the eleven provinces in western China including Sichuan, Guizhou, Yunnan, Shanxi, Gansu, Qinghai,
Xinjiang, Tibet, Ningxia, Inner Mongolia, and Guangxi. Otherwise, the west dummy equals 0. Tibet is excluded
from the sample due to missing data; 6. For brevity, Table 6 only reports results with the policy conditioning
information set. Results with the other conditioning information sets are similar and available upon request; 7.
* p < 0.10; ** p < 0.05; *** p < 0.01.

5.3.3. Politically-Biased Policy

Another concern is that planners favor politically strategic locations [11,48]. Early literature
has also emphasized that the municipalities directly under the central government have particular
characteristics, which reduces their comparability with other provinces [7]. To eliminate this concern,
we excluded Beijing, Tianjin, and Shanghai from our baseline sample. Table 7, columns (1)–(4), reports
the results withthe policy conditioning information set. Our earlier findings on the growth impact of
the four transport infrastructure endowment upgrading indicators wererobust to these special political
status outliers.

Table 7. Transport infrastructure and growth: System-GMM (Policy set). Robustness check
without municipalities.

Dependent Variable: Per Capita Real GDP Growth Rate

Roadpc Highroadshare HSR Trstuct1

(1) (2) (3) (4)

Coefficient −0.033 0.036 * 0.036 ** 0.046 *
Standard error (0.035) (0.019) (0.016) (0.023)

Hansen test p value 0.19 0.30 0.06 0.11
Difference Hansen J test 0.18 0.60 0.08 0.11

AR(1) test 0.03 0.28 0.03 0.34
AR(2) test 0.06 0.20 0.05 0.15

No. of Instruments 22 22 22 22

Notes: 1. Robust standard errors clustered by province in brackets; 2. Year dummies are included in allregressions;
3. The number of observations is 208; 4. We report the p-value for AR(1) and AR(2) tests; and 5. * p < 0.10; ** p < 0.05.
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5.3.4. External Instruments

Thus far, we had instrumented transport infrastructure endowment upgrading in terms of quantity,
quality, and structure by its lags, as in Chakrabarti [27], Farhadi [37], and Jiwattanakulpaisarn et al. [38].
As a further robustness check, we followed Ward and Zheng [65] and used external instruments,
the transport infrastructure indicators averaged for the neighboring provinces, for our key variable of
interest. We defined a province as a neighboring province of i if it shares a common border with that
province. For example, Henan’s neighbors are Shandong, Anhui, Hebei, Shanxi, Shaanxi, and Hubei.
We borrowed this external instrument method from the literature on causal identification within
networks, e.g., Bramoulle et al. [66]. The basic idea for the instrument is that the correlation across
regions reflects some common global trends and is orthogonal to the specific regional unobserved
effects [67]. For instance, it is widely documented in the literature that a distinctive institutional feature
of China’s economic growth miracle is that under a “GDP tournament” scheme, local governments
play an active role in promoting local economic growth, including in infrastructure investment [68,69].
Hence, transport infrastructure investment behavior in one province can mimic that of neighboring
provinces. Thus, the quantity, quality, and structural attributes of transport infrastructure tend
to be similar across adjacent provinces. Table 8, columns (1)–(8), reports system-GMM estimates
using the additional neighbor instruments with the policy and the full conditioning information sets.
The coefficient estimates generated by this specification weresimilar to those using the lagged transport
infrastructure indicators as the internal instruments. Again, our earlier findings in Table 3 still hold for
the external instruments.

Table 8. Transport infrastructure and growth: System-GMM (Policy set and Full set). Robustness check
with neighboring provinces’ transport indicators as external instruments.

Dependent Variable: Per Capita Real GDP Growth Rate

Policy Set Full Set

Variables (1) (2) (3) (4) (5) (6) (7) (8)

Roadpc 0.029 0.073
(0.060) (0.056)

Highroadshare 0.035 * 0.045 *
(0.019) (0.025)

HSR 0.045 * 0.062 *
(0.026) (0.031)

Trstuct1 0.067 ** 0.075 *
(0.030) (0.039)

Hansen test p value 0.09 0.02 0.41 0.04 0.32 0.06 0.12 0.19
Difference Hansen J test 0.63 0.07 0.37 0.89 0.13 0.15 0.44 0.31

AR(1) test 0.43 0.07 0.90 0.23 0.15 0.11 0.11 0.21
AR(2) test 0.47 0.13 0.34 0.91 0.70 0.31 0.90 0.65

No. of Instruments 23 23 23 23 27 27 27 27

Notes: 1. Robust standard errors clustered by province in brackets; 2. Year dummies are included in all regressions;
3. The number of observations is 232; 4. We report the p-value for AR(1) and AR(2) tests; 5. All the regressions use
the respective transport infrastructure indicators averaged for the neighboring provinces as additional instruments;
and 6. * p < 0.10; ** p < 0.05.

6. Conclusions

This study identified and compared the upgrading impacts for the quantity, quality, and structural
aspects of transport infrastructure on regional economic growth in China from 2007 to 2015, when the
country was approaching the upper-middle income stage of development. This is the first study to
consider government development strategies in a transport infrastructure impact evaluation framework
for China. We constructed a unique dataset to describe the three aspects of the transport infrastructure,
and in contrast to recent literature, we selected provinces as the geographic units to alleviate concerns
about SUTVA violations [28]. To address concerns about reverse causality and account for lagged
responses in economic growth to any exogenous shock including transport infrastructure, we adopted
the system-GMM estimator for dynamic panel data and obtained consistent and unbiased parameter
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estimates [32–34,37,60]. We also compared our results with those in the existing literature, focusing on
the differential impacts of various aspects of transport infrastructure on regional economic growth in
China at different economic development levels. This approach yields new insights.

Our analysis led us to some general conclusions about the effects of transport infrastructure on
growth. First, it appeared that transport infrastructure wasstill significantly contributing to economic
growth in China, even as the country had entered the upper-middle income stage. Second, quality
improvements in roadways and railways (measured by expressways and HSR development) and
structural upgrading of the transport infrastructure (measured by the increasing share of government
expenditure for transport) significantly contributed to growth at this development level. However,
we didnot find a significant positive impact for overall quantity expansion of the land transport
network. Third, government development strategies that defy local comparative advantages not only
lead to a lower per capita GDP growth rate but also potentially restrict the contribution of transport
infrastructure. Lastly, regional heterogeneity for Western China could differ across transport modes,
particularly with respect to goods versus passenger transport and roadways versus railways.

This research enhances our understanding of transport infrastructure impacts on economic
growth in China and can inform national transport infrastructure policy. The results are specific to
China’s context but could be useful for policymakers in other emerging economies and developing
countries that are experiencing comparable economic growth and infrastructure development patterns.
Economic growth is central to China’s economic development mission, and our study suggests that
public investments in national high-quality roadways and railways as well as government expenditure
for transport maintenance to improve service efficiency can stimulate aggregate economic growth,
as China reaches the upper-middle income stage. Compared with the earlier and most recent literature,
we found that overall, different aspects of transport infrastructure had heterogeneous impacts on growth
depending on the economic development level. Moreover, to ensure that transport infrastructure
investment will guarantee growth, government development strategies that are favorable to the overall
economic conditions are a vital policy prerequisite.

From a broader perspective, future studies could pay more attention to the function of transport
infrastructure to achieve the Sustainable Development Goals adopted by all United Nations Member
States in 2015. Moreover, new infrastructure, compared to traditional infrastructure such as roads,
railways, and bridges, are built on advanced technology and digitization. Future research may also
analyze how the current system of information and communications infrastructure can be used to
develop the infrastructure under the paradigm of Industry 4.0 [41–43,70,71].
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