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Abstract

Modern economic growth features continuous structural change in technology and industry.

This paper is motivated by the empirical facts that technology in each industry, as well as

the whole economy, becomes more capital intensive and the industrial structure is unimodal,

with a leading industry at any time in the process of economic development. We set up

an in�nite-industry general equilibrium model to discuss technology choice and structural

change in economic development. The model shows that along with the increase in capital

endowment, every industry experiences technology upgrading from labor intensive to capital

intensive, the industrial structure shifts more and more to capital intensive industries, and

the leading industry is taken over by a new leading industry continuously. The predictions of

the model are tested with a data set from the National Bureau of Economic Research�U.S.

Census Bureau's Center for Economic Studies, and a counterfactual simulation is used to test

the implications of the model. In a dynamic extension of the model, a modi�ed Keynes-Ramsey

rule is presented. The model provides a workhorse for multi-industry structural analysis.
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1 Introduction

The way a �rm applies technology to combine various inputs into output, re�ected in a production

function, is one of the most fundamental issues in the economic research. It is a common practice in

economic research to assume the production function to be exogenous and given, no matter whether

the economy to be modelled is one sector or multi-sectors. The given production function implies

that �rms only choose the quantity of input, but not the way to combine them. This assumption also

implies that countries in di�erent level of development only has quantitative di�erences rather than

qualitative di�erences. However, �rms that produce the same products have choices over a technology

set. One example is the adoption of robots in producing manufacturing goods. Figure 1 shows the

robot intensity, i.e. the number of installed industrial robots per 10,000 employees in manufacturing

industry of di�erent countries in 2017, surveyed by the International Federation of Robotics 1. As we

can see from the graph, the robot intensity has large variation across di�erent countries. The report

also documents that China has the fastest development in robot density from 25 units in 2013 to 68

units in 2016 2. This phenomenon indicates dramatic di�erences in technologies across countries.

Figure 1: Robot Intensity in 2016

The technology changes could have di�erent directions. On one hand, we constantly observe

manufacturing industries utilize more and more machines and automation equipment, i.e. to use

increasingly capital-augmenting / capital-complementary / capital-biased technologies. On the other

hand, human capital improvement enables �rms to use more labor-augmenting / labor-complementary

/ labor-biased technologies. The changing technologies appear in the form of evolving capital-labor

ratio in the same industry. We show later in Section 2 that the aggregate capital-labor ratio of US

manufacturing industries increased constantly over the period from 1958 to 2011. More importantly,

the increasing capital intensity was persistent within each disaggregated industry. These observations

1https://ifr.org/ase-studies/industrial-robots/four-yaskawa-motoman-handling-robots-feed-two-turning-machines-
for-the-manu

2https://interestingengineering.com/global-robot-density-rose-to-74-robots-per-10000-workers-in-2016

1



imply that production technology is changing over time and the production function is evolving due

to �rms' endogenous choice of production technology, rather than an exogenously given function.

The literature of appropriate technology addresses this issue. The tradition goes back to Atkinson

et al (1969), and was later modeled in Diwan and Rodrik (1989), Basu and Weil (1998), and Acemoglu

and Zilibotti (2001), arguing that countries with di�erent endowments (and thus di�erent factor

prices) should choose di�erent technologies. One in�uential paper, Caselli and Coleman (2006) builds

a one-sector model of technology choices to study the imperfect substitution between skilled labor

augmenting and unskilled labor augmenting technologies. The paper studies cross-country di�erences

in endowment, technology choices and factor prices (skill premium). The positive correlation between

skill premium and skill labor endowment across countries is explained by imperfect substitutes between

unskilled and skilled labor, as well as di�erences in their technology frontiers. Similarly, Leon-Ledesma

and Satchi (2016) study the appropriate technology in a one-sector growth model.

The use of a single sector economy in the existing literature has its limitations. By assuming

the economy as one sector, these models overlooked the impacts of evolving industrial structure on

technology choices. Imagine a one-sector economy, where we observe increasing endowment of skill

labor, along with increasing skill premium over time. The approach in Caselli and Coleman (2006)

would infer great improvement of technology frontiers along the dimension of skill-labor augmenting

factor, since the return to skill labor does not decrease with an increase in the supply of skill labor.

However, if we consider evolving industrial structure from un-skill labor intensive to skill labor in-

tensive industries, the expansion of skill labor intensive industries raises the demand for skill labor

and drives up the skill labor return. Therefore, the inferred changes in technology frontiers would not

exist or be smaller than under the one-sector assumption. This thought experiment illustrates the

necessity of multi-industry setup when discussing economic development.

In this paper, we discuss the technology choices in an economy with in�nite industries, and relate

the technology choices with endowment-driven structural change across industries (Ju, Lin and Wang

2015). We contribute to the literature by answering the following questions: How do we explain the

endogenously evolving capital intensity of each industry? While the aggregate economy becomes more

capital abundant, how do the technology choices of each industry change? Are industries using capital

more e�ciently, or using labor more e�ciently? How are capital intensities, technology choices and

industrial market shares related? Summing up, we explore how the endowments shapes technology

choices and structural change of industries in an economy.

Before theoretical analysis, we �rst investigate capital intensities in each industry by exploring

NBER-CES dataset of US manufacturing industries during the period between 1958 and 2010. We

�nd a strong pattern that capital intensity (de�ned as the ratio of capital over labor or capital income

share) in each industry, as well as in the economy, is increasing over time. We then extend Caselli and

Coleman (2006) model to a multi-industry (in�nite industries) economy in the general equilibrium

framework. In the model, technology choices are modelled as the augmenting factors for capital and

labor in a CES function. The two augmenting factors are bounded by technology frontier: technologies

that are more e�cient in using labor are less e�cient in using capital, and vice-versa. We �nd that

with an increase in capital endowment, rental-wage ratio declines and economic structure moves from

labor-intensive to capital-intensive industries. In addition, capital intensities of each industry increase.

The technology choices in each industry depend on aggregate endowment, technology frontier, as well

as the elasticity of substitution between capital and labor. When the elasticity of substitution between
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capital and labor is lower / higher than one, the accumulation in total capital endowment leads to

lower / higher capital-augmenting technology, and higher / lower labor-augmenting technology.

When �xed technology frontier exists in each industry, there is a trade-o� between capital improv-

ing and labor improving technologies. Intuitively, when capital endowment becomes more abundant,

real rental price (de�ned as rental price over wage) becomes lower. If capital and labor are substitutes,

cheaper capital price encourages more intense usage of capital. On the contrary, if capital and labor

are complementary, more abundant capital implies more scarce labor endowment. As a result, one

must adopt the �labor-augmenting� technology to increase the e�cient labor input. Therefore, the

technology choice between capital and labor depends crucially on the elasticity of substitution between

capital and labor.

After setting up the model, we compute technology choices of disaggregated industries for the

US manufacturing sector. By applying Caselli and Coleman (2006) to multi-industries, we compute

annual technology choices as augmenting factor in a CES production function for each industry, and

estimate the technology frontiers of each industry in every year. Using the quantitative model, we

conduct one counterfactual test and show that, without the technology choices, the structural change

from labor intensive to capital intensive sectors would become slower.

The paper is related to literature on the following branches. Firstly, we extend the literature on Ap-

propriate technology (Caselli and Coleman 2006, Leon-Ledesma and Satchi 2011, 2016) in one-sector

economy to multi-sector economy. By doing so, our model shows that changes in industrial structures

are closely related with technology choices, and our empirical analysis con�rms the model predictions.

There is also a growing literature on directed technology change (Kennedy (1964), Samuelson (1965),

Drandakis and Phelps (1965), David (1975), Acemoglu (1998, 2002, 2007)). This literature empha-

sizes factor-biased, rather than aggregate technical change. The total endowment a�ects the technical

change through price e�ect and market size e�ect. Our departure from literature is that we consider

multi-sector rather than one sector economy, so as to relate the technical changes with industrial

structure. We jointly explain the changes in technology choices, capital intensity and market share

of each industry. In addition, we show the longrun changes in technology choices and technological

frontiers in the US empirically. We also provide an explanation for the general observations of capi-

tal deepening (Acemoglu and Guerrieri 2008) and declining labor share (Karabarbounis and Neiman

2014). We contribute to the literature by showing declining labor share within each industry, due to

change in endowment and endogenous technology choices.

Secondly, our paper discusses endowment-driven structural change. Despite that the observation

of structural change has been documented in earlier research (such as Matsuyama 2008, Herrendorf,

Rogerson and Valentinyi 2011, Kongsamut, Rebelo, and Xie 2001, Caselli and Coleman 2001, Wang

and Xie 2004, etc), we are the �rst to construct a theoretical model to jointly explain structural change

with technology choices. In the Solow model, an economy with rapid accumulation of capital should

experience a fast decline in capital return (Solow 1955), which was not found in the Asian Tigers

and China during their fast economy growth (Lin and Ren (2007), Song, Storesletten and Zilibotti

(2011)). This paper provides an explanation: the changing industrial structure from labor intensive

to capital intensive sectors provides a large demand for capital and drives up the return of capital.

The rest of paper is organized as follows. In section 2, we introduce three stylized facts about

observed capital intensity. Section 3 constructs the model and derives testable predictions. Section 4

computes the technology choices based on the model and presents general �ndings about industrial
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structural and technology choices. Section 5 shows a simulation of the model and counterfactual

analysis of �xed technology frontiers. Section 6 shows an alternative approach to model technology

choices in di�erent industries. Section 7 constructs a dynamic growth model with technology choices.

Section 8 concludes.

2 Stylized Facts of Capital Shares

We begin our analysis by investigating capital intensities for disaggregated US industries. The ob-

served capital intensity contains information about unobserved technology choice of each industry.

Take a simple example, if we assume production function to be a Cobb-Douglas production function

y = AKαL1−α. In this function, α measures technology choices. Changes in capital share (and hence

capital-labor ratio) indicates changes in technology choices. Later we show in our model that cap-

ital intensity also re�ects changes in technology choices when we assume a general CES production

function.

We us the NBER-CES data set of the US manufacturing sector, which covers 495 industries at the

4-digit ISIC level from 1958 to 2011. Supplementary data of the UNIDO data set is also used, which

covers 148 countries and 18 manufacturing sectors from 1963 to 2014. We measure capital intensity by

capital income share, i.e. one minus the share of wage income in value added. We compute the capital

share for each industry in each year using NBER-CES dataset for US, and that for each industry in

each country, each year using UNIDO dataset. We lay out the following three key �ndings.

Finding 1: Aggregate capital share is increasing.

Figure 2 shows the change in aggregate capital income share for US over time. We �rst compute

the total capital stock K, employment L, wage payment WL and value added V A, then de�ne the

aggregate capital intensity as the capital income share (V A−WL)/V A. We see that the capital income

kept increasing over the period from 1958 to 2011. Although well documented by the recent literature

on declining labor share (Karabarbounis and Neiman 2014), this simple observation is contradictory

with one of the Kaldor's facts.

Figure 2: Aggregate Capital-Labor Intensity
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Finding 2: There exists tremendous cross-industry and over-time dispersion in capital shares.

Ju, Lin and Wang (2015) documents that there is large cross-industry heterogeneity in capital

intensities. We �nd as large heterogeneity in capital shares both cross-industry and over time. Figure

3 shows the distribution of capital share in 1958, 1980 and 2011 for US manufacturing industries. In

1958, the 90th percentile of capital share is 0.65, which is 1.86 times of the 10th percentile (0.35).

While in 2011, the 90th percentile of capital share is 0.85, which is 1.55 times of the 10th percentile

(0.55). From 1958 to 2011, the average capital share evolves from 0.47 to 0.69, with dispersion in

capital share being persistent.

Figure 3: Distribution of Capital Intensity

Finding 3: The increasing capital share is largely contributed by within-industry change.

After observing the two patterns above, one would ask naturally, whether the increasing capital

share is contributed by within-industry changes or changes in industry compositions. We resolve that

question by running an industry-year level regression of capital shares as the following equation.

CapitalShareit = β0 + β1t+ δi + εit

where i stands for industry and t stands for time. After controlling for sector �xed e�ect, the

coe�cient β1 shows the within-industry changes in capital share. To be more rigorous, we also

conduct the following regression of capital share using UNIDO dataset (covering 148 countries and 18

manufacturing sectors from 1963 to 2014), controlling for sector and country �xed e�ect.

CapitalSharecit = β0 + β1t+ δi + γc + εit

where c stands for country, i stands for industry and t stands for time. After controlling for sector

and country �xed e�ect, the coe�cient β1 indicates within industry changes in capital share. The

regression results are shown in Table 1.

Column 1 shows the simple OLS regression using NBER-CES data. The coe�cient on t shows the

average e�ect of increasing capital share across industries. In column 2, we control for sector �xed

e�ects. The coe�cient on t represents the increasing capital share within industry. We observe a
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Table 1: Within-industry Changes in Capital Shares

(1) (2) (3) (4) (5)
NBER_CES UNIDO
cap_share cap_share cap_share cap_share cap_share

time 0.00401*** 0.00404*** 0.000215***0.000510*** 0.000782***
(85.03) (175.2) (4.63) (11.3) (19.47)

cons 0.475*** 0.474*** 0.587*** 0.579*** 0.569***
(319.06) (652.56) (410.18) (429.85) (62.31)

Sector FE NO YES NO Country Country*Sector

N 24676 24676 74440 74440 74440
r2 0.227 0.559 0.000288 0.332 0.492

slightly larger coe�cient of β1. It indicates that the increasing capital share is mainly contributed

by within industry changes. Similarly, we use UNIDO dataset to conduct a country-industry-year

regression of capital share w.r.t time. Column 3 shows the results for OLS regression, while in Column

4 we add country �xed e�ect, and in Column 5 we additionally controls for country by industry �xed

e�ect. The increasing coe�cient estimates of β1 also indicates that within-industry changes of capital

share mainly contribute to the aggregate changes.

Figure 4 is a more straightforward illustration of within-industry changes in capital shares. Each

panel stands for one 2-digit ISIC industries in US. Scatter points in each window are capital shares

of each 4-digit ISIC industries. We clearly observe increasing in capital share in each industry.

Figure 4: Capital Shares in 4-digit Industries
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3 Model

3.1 Set-up

Consider a closed economy with a continuum of industries on [0, 1] and a continuum of individuals

on [0, 1], for any i ∈ [0, 1], in the industry i, there are a �nite number of �rms producing the good

i, and all the individuals are homogeneous, each of which endows the initial physical capital K0 > 0

and labor L0 > 0, and denote k0 = K0/L0.

We make some basic assumptions as follows.

A1. Each consumer is a utility maximizer, and the utility function of each consumer is

U((Ci)i∈[0,1]) =

(∫ 1

0

θiC
ρ
i di

)1/ρ

,

where ρ ∈ [0, 1), θi > 0 are constants, and θi as a function of i ∈ [0, 1] is piece-wise smooth and

satisfying
∫ 1

0
θidi = 1, and Ci ≥ 0 is the quantity of good i the individual consumes. If ρ = 0, then,

the utility function is reduced to the Cobb-Douglas form:

U((Ci)i∈[0,1]) =

∫ 1

0

θi lnCidi,

A2. Each �rm is a pro�t maximizer, and the possible production function of the industry i is

Fi(K,L) = ((aiK)ρi + (biL)ρi)
1/ρi ,

and (
ai
mi

)σi
+

(
bi
ni

)σi
= 1, (1)

wheremi > 0, ni > 0, ρi < 1, and σi 6= 0 are constants, satisfying σiρi > 0. Our model generally allow

di�erent sectors vary in the elasticity of substitution between capital and labor in production function

and technology frontiers. K and L are the physical capital and labor, respectively. And, ai and bi are

the augmenting coe�cients for capital and labor, respectively, which can be chosen according to (1),

which, in turn, is the technology frontier of the industry i, similar with Caselli and Coleman (2006).

A3. For any i ∈ [0, 1], it holds that

ρ <
σiρi
σi − ρi

< 1,

A4. All the markets are competitive, including factor markets and goods markets.

A5. Every consumer owns a de�nite share of pro�t of every �rm.
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For convenience, for any i ∈ [0, 1], denote

εi =:
σiρi
σi − ρi

, τi =:
ρi

1− ρi
, γi =:

mi

ni
, δi =:

σiτi
σi − τi

.

Clearly,

δi =
εi

1− εi
,

and A3 is equivalent to that

εi > ρ, σi > τi, ∀i.

Now, we give an interpretation for the meaning of εi. Clearly,

1

εi
=

1

ρi
− 1

σi
,

then, the more close between ρi and σi, the bigger εi is. Since

1

1− ρi

is the elasticity of substitution between Ki and Li, and, analogously, we can say that

1

1− σi

is the elasticity of substitution between ai and bi, or, in mathematics, ρi determines in some sense

the shape of the production function isoquant curve for industry i, and analogously, σi determines

in some sense the shape of the technology frontier for industry i, then, εi captures joint features of

the production function and the technology frontier of industry i, the bigger it is, the more similar

the shape of the production function isoquant curve and that of the technology frontier of industry

i are. For simplicity, we call εi the similitude degree in industry i which means roughly the degree

of coordination of the choice of the augmenting coe�cients for capital and labor (ai and bi) with the

fundamental feature of the capital and labor in industry i (Ki and Li). We will see below (Proposition

4) that the higher the similitude degree is, the more quickly the industry upgrades in technology (that

is, the more capital intensive), along with the increase of capital per capita of the whole society.

Remark 1. The condition σiρi > 0 means that σi and ρi have the same sign. That is, when

the capital and labor are complimentary (ρi < 0, and therefore, the elasticity of substitution between

capital and labor is 1/(1 − ρi) > 1 ), then, the augmenting coe�cients for capital and labor ai and

bi are also complimentary; when the capital and labor are substitute (ρi > 0, and therefore, the

elasticity of substitution between capital and labor is 1/(1−ρi) < 1), then the augmenting coe�cients

for capital and labor ai and bi are also substitute. Figure 5 shows an illustration of the technology

frontier under di�erent values of parameters. The left panel is an example when σi is larger than 0

and smaller than 1; the right panel is one when σi is negative. Note that when σi is larger than 1,

the technology frontier is similar to the left panel, but concave in shape.
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Figure 5: Illustration of Technology Frontiers

The condition ρ < εi means that comparing with each εi, ρ is relatively small, or equivalently, the

elasticity of substitution between di�erent goods 1/(1− ρ) is relatively small.

Concerning the �rm's pro�t maximization problem, by solving the embedded cost minimization

problem, one can easily �nd that under the condition εi < 1, the optimal choice of ai, bi is an interior

solution, under the assumptionA3, and it will be corner solution, under the assumptionA3' in section

3.7.

In our following discussion, without any loss of generality, we may make a further assumption.

A6. In each industry, there is only one �rm.

We give an explanation for this assumption. First of all, we can prove (see the proof of theorem

1 in Appendix I) that in each industry, facing any given price system, any two �rms will take the

same technology and the same capital-labor ratio, and hence, since the production function is �rst

order homogeneous, then, we can combine all of these �rms to one �rm, which produce the sum of

the productions of these �rms and use up the sum of the capitals and labors used in the production

of these �rms. Therefore, we can make the assumption A6.

In the end of this section, we mention that in each sector, the total possibility production set is the

union of the production possibility sets for each possible technology, any one of which is convex, but

their union is not. And hence, the classical Arrow-Debreu su�ciency conditions for the existence of

Walrasian equilibrium are not satis�ed completely, but we will see that in our setting, the equilibrium

exists and is unique.

Another problem is worth mentioning. That is, what about the case, where multiple technologies

are allowed to take simultaneously for any one �rm. However, this problem is equivalent to the above

problem in some sense. In fact, if a �rm takes two technology simultaneously, say, technology 1 and

technology 2, then, according to the above analysis, this is equivalent to the case, where there are

two �rms, �rm 1 takes the technology 1, �rm 2 takes the technology 2, and therefore, facing the same

price system, there exist two �rms, which take di�erent technologies, and this would contradict to the

above analysis.

In one word, the assumption A6 is acceptable.
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3.2 General equilibrium

Under the condition A3, all the �rms in the same industry have the same interior solution for the

technology choice, and noticing that the production functions are all �rst order homogeneous, and

hence, for simplicity, we make a further assumption:

A6. In each industry, there is only one �rm.

Now, we give our formal de�nition of general equilibrium.

De�nition 1. (C∗i ; a∗i , b
∗
i ,K

∗
i , L

∗
i ; p
∗
i , r
∗, ω∗)i∈[0,1] is an equilibrium, if

(I)

(C∗i )i∈[0,1] ∈ arg max
(Ci)i∈[0,1]

U((Ci)i∈[0,1]),

s.t. ∫ 1

0

p∗iCidi ≤ r∗K0 + ω∗L0;

(II) for any i ∈ [0, 1],

(a∗i , b
∗
i ,K

∗
i , L

∗
i )

∈ arg max
a,b,K,L

{
p∗i ((aK)ρi + (bL)ρi)

1/ρi − r∗K − ω∗L
}
,

s.t. (
a

mi

)σi
+

(
b

ni

)σi
= 1;

(III)

C∗i = ((a∗iK
∗
i )ρi + (b∗iL

∗
i )
ρi)

1/ρi , i ∈ [0, 1],∫ 1

0

K∗i di = K0,∫ 1

0

L∗i di = L0.

Remark 2. One can see that if (C∗i ; a∗i , b
∗
i ,K

∗
i , L

∗
i ; p
∗
i , r
∗, ω∗)i∈[0,1] is an equilibrium, then,

r∗ > 0, ω∗ > 0,

and

C∗i > 0, p∗i > 0, a.s.

where "a.s." stands "almost surely with respect to i ∈ [0, 1]" in Lebesgue measure. For simplicity, we

omit the notation "a.s." in the sequel, when it is required.

Remark 3. It's easy to see that in equilibrium, each �rm's maximized pro�t must be 0.
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3.3 Main results

Now, we state our main results.

Theorem 1. For any k0 > 0, there exists a unique equilibrium (Ci; ai, bi,Ki, Li; pi, r, ω)i∈[0,1],

which is determined by the following equations: for any i ∈ [0, 1],

Ci = ((aiKi)
ρi + (biLi)

ρi)
1/ρi ,

Ki =

(
θim

ρ
i (1 + z−1i )ρ/εi−1

)1/(1−ρ)∫ 1

0

(
θjm

ρ
j (1 + z−1j )ρ/εj−1

)1/(1−ρ)
dj
K0,

Li =

(
θin

ρ
i (1 + zi)

ρ/εi−1
)1/(1−ρ)∫ 1

0

(
θjn

ρ
j (1 + zj)ρ/εj−1

)1/(1−ρ)
dj
L0,

ai = mi

(
1 + z−1i

)−1/σi
,

bi = ni (1 + zi)
−1/σi ,

ω

pi
= ni (1 + zi)

1/δi ,

ω

r
= z,

where

zi = (γiz)
δi ,

and z is determined by

k0 =
z1/(1−ρ)

∫ 1

0

[
θim

ρ
i

(
1 + (γiz)

−δi
)ρ/εi−1]1/(1−ρ)

di∫ 1

0

[
θjn

ρ
j (1 + (γjz)δj )

ρ/εj−1
]1/(1−ρ)

dj

. (2)

And for this equilibrium, for any i ∈ [0, 1],(
ai
ri

)τi
=

(
mi

ri

)δi
=

(
ai
mi

)σi
=

zi
1 + zi

= αi,

(
bi
ωi

)τi
=

(
ni
ωi

)δi
=

(
bi
ni

)σi
=

1

1 + zi
= βi,

zi = (ηi/γi))
σi = (ηiz)

τi = (ηiki)
ρi = (γiki)

εi = ki/z,

where

ri =
r

pi
, ωi =

ω

pi
, ki =

Ki

Li
, ηi =

ai
bi
, αi =

riKi

Ci
, βi =

ωiLi
Ci

.

Here, ki is the capital per capita in the industry i, ηi can be considered as a relative augmenting

coe�cient of capital to labor in the industry i , αi and βi are the capital share and labor share in the

industry i, and z is well-de�ned (See Lemma 1 in the Appendix).
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From this theorem, we get our �rst proposition.

Proposition 1.(Endowment Driven Equilibrium) The choice of technologies is determined

by the structure of factor endowments and the taste for commodities of the people. In particular, for

di�erent economies, if the tastes for commodities of the people are considered the same, and all the

technologies are common knowledge for the whole humanity, then, the choice of technologies for each

economy is determined only by the structure of its factor endowments.

The observed capital intensity, either de�ned as capital-labor ratio or capital income share, are

endogenous in our model. The two measures are coherent.

Corollary 1. In equilibrium, for any i 6= j ∈ [0, 1],

αi > αj ⇐⇒ ki > kj .

Concerning the ηi, the problem is more complicated. In general, we can not conclude that ηj > ηi

means that the industry j is more capital intensive than the industry i.

Corollary 2. In equilibrium, for any i 6= j ∈ [0, 1],

(i) if one of the following two conditions holds:

σi = σj > 0, γi = γj , (3)

or

ρi = ρj > 0, (4)

then,

αi > αj ⇐⇒ ηi > ηj ;

(ii) if one of the following two conditions holds:

σi = σj < 0, γi = γj , (5)

or

ρi = ρj < 0, (6)

then,

αi > αj ⇐⇒ ηi < ηj .

Conditions (3) and (5) mean that the technology frontiers for the industry i and the industry j

are of the same type, having the same shape, the only di�erence between them is in their "sizes", or,

put it another way, roughly, one frontier is an enlarged version of another, enlarged in both directions
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in the same magnitude. If (3) or (5) holds, then we say that industry i and industry j have similar

technology frontier.

Conditions (4) and (6) mean that the elasticities of substitution between capital and labor in the

industry i and industry j are equal.

Remark 4. Corollary 1 tells us that α and k are coherent. Corollary 2 says that for industries

with similar technology frontiers or the same elasticity of substitution between capital and labor, if

the capital and labor are substitute in those industries, then, α and η are coherent as well; if the

capital and labor are complimentary in those industries, then, the relationship between α and η is

negative.

We are also interested in the relationship between ηi and γi. We wonder whether it holds ηi > ηj

or not, in the case, where γi > γj .

In general, it does not hold. From Theorem 1, we have that for any i,

ησi−τii = zτiγσii .

It follows the following corollary.

Corollary 3. In equilibrium, for two industries i and j with σi = σj , ρi = ρj , then, if σi = σj > 0,

then,

ηi > ηj ⇐⇒ γi > γj ;

if σi = σj < 0, then,

ηi > ηj ⇐⇒ γi < γj .

This result shows us how to interpret the economic meanings of the parameters ηi and γi, and how

to "de�ne" the relative more capital intensive industries in our setting.

3.4 Social Planner's Problem

The social welfare can be measured by the individual's utility function value in this case. Therefore,

the social planner's problem is as follows.

max

(∫ 1

0

θiC
ρ
i di

)1/ρ

,

s.t. Ci = ((aiKi)
ρi + (biLi)

ρi)
1/ρi , i ∈ [0, 1]

(ai/mi)
σi + (bi/ni)

σi = 1, i ∈ [0, 1],∫ 1

0

Kidi = K0,

∫ 1

0

Lidi = L0.

One can prove that this problem has unique solution. The proof is standard, we omit it.

According to the �rst theorem of welfare economics, the outcome of the general equilibrium must

be the solution of the social planner's problem, that is, the outcome of the general equilibrium is

Pareto optimal. (One can verify this statement by solving the social planner's problem directly.)
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The corresponding maximized social welfare value3 is

W =

L0

∫ 1

0
θ
1/(1−ρ)
i

(
ni(1 + zi)

1/δi
)ρ/(1−ρ)

di∫ 1

0

[
θjn

ρ
j (1 + zj)ρ/εj−1

]1/(1−ρ)
dj

1/ρ

.

By the envelope theorem, one can get that W is strictly increasing with respect to k0, ni and mi, for

any i ∈ [0, 1].

That is, if the capital endowment grows or some technology progress takes place, then, the society

is made better o�.

Remark 5. We have seen that for any industry, the appropriate technology, (ai, bi), is determined

essentially by the proportion zi, which depends on z, which, in turn, is determined by the initial factor

endowments (K0, L0). If we choose another z, not adapted to the initial factor endowments, and this

would give incorrect zi, and �nally, incorrect (ai, bi), and this would induce a loss of welfare, i.e. factor

market distorsions bring welfare loss.

3.5 Comparative Static Analysis

From the above closed form solution of the equilibrium, it follows a corollary directly.

Corollary 4. For any i ∈ [0, 1], with respect to k0, αi, ki, ωi are strictly increasing; βi, ri is

strictly decreasing; ω/r and W are strictly increasing; if ρi > 0, then, ai is strictly increasing and bi
is strictly decreasing; and if ρi < 0, then, ai is strictly decreasing and bi is strictly increasing.

Put into words, we get the following proposition.

Proposition 2. (Endowments and Technology Choices) Along with the increase of capital

per capita of the society, each industry will experience a technology upgrading from labor-intensive

to capital-intensive, and in this process, the relative price of capital to labor is decreasing; and the

labor share in each industry is decreasing; the capital per capita in each industry is increasing.

3.6 Industrial Structure

For any i ∈ [0, 1], denote the monetary total output of the industry i as

Mi = piCi,

and hence, the total monetary output of the whole economy, the GDP, is

M =

∫ 1

0

Midi.

Clearly, by the de�nition of equilibrium, we have that M = I, where I is just the total income of the

individual.
3Under the additional assumption that and mi > 0, ni > 0, ρi and σi, as functions of i ∈ [0, 1], are all piece-wise

smooth.
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For any i ∈ [0, 1], let

wi = Mi/M,

which is the proportion of the industry i in the whole economy.

The distribution {wi}i∈[0,1] can be used to express the industrial structure of this economy. It

relates to the distribution of {ki}i∈[0,1].
We now investigate the change of these two distributions along with the change of k0.

By the proof the Theorem 1 in the Appendix, we know that for any i ∈ [0, 1],

wi =

(
θ
1/ρ
i ni(1 + zi)

1/δi
)ρ/(1−ρ)

∫ 1

0

(
θ
1/ρ
j nj(1 + zj)1/δj

)ρ/(1−ρ)
dj

.

For any i 6= j, it's easy to varify that
∂

∂k0

(
wi
wj

)
has the same sign with ki − kj .

And hence, we get a result concerning the change of the distribution of {wi}i∈[0,1]. We write it as

a proposition.

Proposition 3. (Endowment and Industrial Structure) Along with the increase of the

capital per capita of the society, the industrial structure changes accordingly, it tends more and more

towards capital-intensive industries.

Now, we look at the change of the distribution of {ki}i∈[0,1] along with the increase of k0.

Noticing that for any i 6= j,
ki
kj

=
γδii

γ
δj
j

zδi−δj ,

we get that along with the increase of k0, ki increases more quickly (slowly) than kj , if and only if

δi > (<)δj , which is equivalent to εi > (<)εj .

And hence, we get a proposition as follows.

Proposition 4. (Endowments and Capital Intensities) Along with the increase of the capital

per capita of the society, among all the sectors, the higher the similitude degree is, the more quickly

its capital per capita increases. In particular, for any two sectors with the same similitude degrees,

the ratio of their capitals per capita will remain constant.

Corollary 5. If εi = ε, for all i ∈ [0, 1], where ε ∈ (ρ, 1) is some constant, then, for any i, j,

ki
kj
≡
(
γi
γj

)δ
,

where

δ =
ε

1− ε
,
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and
∂

∂k0

(
wi
wj

)
> (=, <)0,

if and only if

γi > (=, <)γj .

Therefore, in the case, where the parameter εi = 1/( 1
ρi
− 1

σi
) for all sectors are the same, their

capitals per capita will increase in the same pace, and hence, "the capital intensiveness structure"

of the economy will remain still, that is, a relative capital intensive industry will always remain

relative capital intensive, a relative labor intensive industry will always remain relative labor intensive,

(noticing that the real capital intensiveness for any industry will increase along with the increase of

k0 ), or, in other words, the relative location of any industry will remain the still in the economy, and

the monetary output of a relative capital intensive industry will increase quickly than a relative labor

intensive industry so that the economy will more and more tend to tilt to capital intensive industries.

For example, suppose that εi = ε, for all i ∈ [0, 1], and γi is strictly increasing with respect to i,

then, on the interval [0, 1], among all the industries, from left to right, the industry is more and more

capital intensive, and this situation will remain still, along with the increase of k0, and the distribution

of {wi}i∈[0,1] will tend to put more and more weight on the relative right place, that is, the economy

will tend to more and more tilt to capital intensive industries.

3.7 Corner Solution

In the above setting, an interior solution occurs, in which the assumption σi > τi is essential.

In this section, for simplicity and for comparison, we consider the discrete case, where the economy

has only n sectors, and ρi > 0, σi > 0 for all i = 1, ..., n. And even more, replacing A3, we make an

assumption:

A3'. For any i = 1, ..., n, it holds that

εi > ρ, σi < τi.

In this case, by the similar method used in the proof of Theorem 1 in Appendix 1, we see that each

�rm has a corner solution in its technology choice problem, that is, for a �rm in the industry i, the

optimal choice of ai, bi is

ai = mi, bi = 0,

and accordingly,

Ki > 0, Li = 0;

or

ai = 0, bi = ni,

and accordingly,

Ki = 0, Li > 0;
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or both. In the last case, where both of the corners are all optimal, then, in this industry, di�erent

�rms may choose di�erent technologies, but, of course, only one of the corners.

And hence, holding A3', the assumption A6 we made above is not suitable, because under this

assumption, the general equilibrium may not exist. Therefore, under A3', replacing A6, we make an

assumption that in each industry, there are two �rms, which take di�erent corner technologies.

And, because the production functions are all �rst order homogeneous, an equivalent assumption

is as follows:

A6'. There is only one �rm in each industry, but it can take the two corner technologies simulta-

neously to produce its products.

Under this assumption, we have that for the �rm in the industry i, if the capital and labor it

demands are Ki, Li respectively, then, the output it produces is

Yi = miKi + niLi,

and if Ki > 0, then, it must take the technology

ai = mi, bi = 0.

if Li > 0, then, it must take the technology

ai = 0, bi = ni.

The concept of general equilibrium can be de�ned similarly. And hence, to express the equilibrium,

without any loss, we omit to write out the ai, bi and Ci explicitly.

For simplicity, we make a further assumption that ρ = 0, and hence, the individual utility function

is of Cobb-Douglas form.

We say that industry j is more capital intensive potentially (or higher) than industry i, if γj > γi.

Now, we rank {γ1, ..., γn} in an increasing order. For simplicity, we assume that

γ1 ≤ γ2 ≤ ... ≤ γn. (7)

That is, throughout the industry 1 to the industry n, the potential capital intensities are increasing.

For any i = 1, ..., n− 1, denote

At =
1

γt

∑
j>t θj∑
j≤t θj

,

A′t =
1

γt+1

∑
j>t θj∑
j≤t θj

,

and put

A′0 =:∞, An =: 0.

We have that

∞ = A′0 > A1 ≥ A′1 > ... > An−1 ≥ A′n−1 > An = 0.

Now, we state our result.
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Theorem 2. The equilibrium exists. And (Ki, Li; pi, r, ω)i=1,...,n is an equilibrium, if and only if

it satis�es that

(I) for any i = 1, ..., n,

Ii = θiI0,

where

Ii = rKi + ωLi, ∀i = 0, 1, ..., n;

(II) for any i = 1, ..., n, if

γi ≥
r

ω
,

then,

Li = 0, pimi = r;

if

γi ≤
r

ω
,

then,

Ki = 0, pini = ω;

(III) if

At ≥ k0 ≥ A′t, t = 1, ..., n− 1,

then,
r

ω
=

1

k0

∑
j>t θj∑
j≤t θj

;

if

A′t−1 > k0 > At, t = 1, ..., n,

then,
r

ω
= γt;

(IV)
n∑
i=1

Ki = K0,

n∑
i=1

Li = L0.

Let's look at a simple special case.

Corollary 6. Suppose that every inequality in (7) is strict inequality. Then, the equilibrium

(Ki, Li; pi, r, ω)i=1,...,n is unique, which is determined as follows:

(I) if

At ≥ k0 ≥ A′t, t = 1, ..., n− 1,

then, for any i ≤ t,
Ki = 0, Li =

θi∑
j≤t θj

L0, pini = ω,

and for any i > t,

Li = 0, Ki =
θi∑
j>t θj

K0, pimi = r,
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and and
r

ω
=

1

k0

∑
j>t θj∑
j≤t θj

;

(II) if

A′t−1 > k0 > At, t = 1, ..., n,

then, for any i < t,

Ki = 0, Li = θi (γtK0 + L0) , pini = ω,

for any i > t,

Li = 0, Ki = θi (K0 + L0/γt) , pimi = r,

and

Kt =
∑
j≤t

θjK0 −
1

γt

∑
j>t

θjL0,

Lt =
∑
j≥t

θjL0 − γt
∑
j<t

θjK0,

ptmt = r, ptnt = ω,

and
r

ω
= γt.

Summing up the above analysis, in this setting, we get the following proposition.

Proposition 5. (Technology upgrading) Along with the increasing of the capital per capita

of the society, all the industries will take technology upgrading sequentially, each industry (except

for the �rst industry and the last industry) will experience three phases of technology upgrading:

pure labor technology, mixed technology, and pure capital technology, the �rst industry experiences

only two phases: pure labor technology, and mixed technology; the last industry experiences only two

phases: mixed technology, and pure capital technology. And at any level of the capital per capita,

there is only one industry taking the mixed technology, all lower industries take pure labor technology,

all higher industries take pure capital technology. Along with the increasing of the capital per capita

from 0 to ∞, the order of technical upgrading is from higher industries to lower industries one by one

sequentially.

3.8 Liontief case

If in the basic setting in 3.1, holding all the assumptions, and let ρi = −∞ for some (may or may not

be all) i ∈ [0, 1], then, the technologies in these industries will be reduced to Liontief type, that is, for

these industries, the production functions will be

Yi = min{aiKi, biLi}.
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And, it this case, for these industries, we have

εi = −σi, τi = −1, δi =
σi

1 + σi
,

and, assumption A3 will be reduced to

ρ < −σi < 1.

In this case, all of our main results will remain true. That is, the Liontief case is a special case of our

setting. More precisely, even if the production functions in some of the industries are changed from

the ordinary CES function to a Liontief function, the equilibrium will also exist and is unique, and

can be determined by the same method as in Theorem 1.

In the end of this subsection, we discuss the Liontief case in another setting of technology choice.

Let's �rst consider a one-sector model, the production function is of Liontief type:

Y = min{aK, bL},

where Y is the consumption good, K,L are capital and labor respectively, a > 0, b > 0 are technology

parameters, the set of all possible (a, b) is denoted as T , which is just the technology set. Suppose

there is only one individual, owning the initial endowments K0, L0.

If T is only a single-point set, then, obviously, the Walrasian equilibrium exists always. We denote

the prices of capital and labor as r and ω respectively, and normalize the price of the consumption

good as 1.

If
b

a
=
K0

L0
,

then, the equilibria are multiple, and (r, ω) is the equilibrium prices, if and only if it satis�es

1 =
r

a
+
ω

b
.

If
b

a
>
K0

L0
,

then, the unique Walrasian equilibrium prices are r = a, ω = 0. In this case, there exists free disposal

of labor. That is, with respect to this technology, the social labor supply is excessive. The free disposal

equilibrium labor demand is any L ∈ [K0a/b, L0].

If
b

a
<
K0

L0
,

then, the unique Walrasian equilibrium prices are r = 0, ω = b. In this case, there exists free disposal

of capital. That is, with respect to this technology, the social capital supply is excessive. The free

disposal equilibrium capital demand is any K ∈ [L0b/a,K0].

If the technology set T is a two-point set, e.g.

T = {(a1, b1), (a2, b2)},
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and suppose that
b1
a1

<
b2
a2
,

then, if only one technology can be taken, then, the Walrasian equilibrium without free disposal exists,

if and only if there is a i ∈ {1, 2} such that

K0

L0
=
bi
ai
.

If the two technologies can be chosen simultaneously, then, the Walrasian equilibrium without free

disposal exists, if and only if
b1
a1
≤ K0

L0
≤ b2
a2
.

Otherwise, there only exists Walrasian free disposal equilibrium.

One can extend this discussion to multiple-sector case, and get similar results. As an example,

we here discuss a two-sector model, and we only discuss the pure technology case, that is, any �rm is

only allowed to take one technology. And, for simplicity, we assume that any one of the two sectors,

there is only one �rm, and in this economy, there is only one individual with endowments K0, L0.

Suppose the utility function of the individual is

U(C1, C2) = Cθ11 C
θ2
2 ,

where θ1 > 0, θ2 > 0 and θ1 + θ2 = 1. And suppose that for any i ∈ {1, 2}, in the industry i, the

production function is

Yi = min{aiKi, biLi},

and the technology set is Ti.

Then, one can prove that the Walrasian equilibrium without free disposal exists, if and only if

there exist (a1, b1) ∈ T1, (a2, b2) ∈ T2 such that K0/L0 is located between

θ1
b1
a1

+ θ2
b2
a2

and

(
θ1
a1
b1

+ θ2
a2
b2

)−1
.

Otherwise, there exist only Walrasian free disposal equilibria.

After all, in the Liontief case, if free disposal is allowed, then, the equilibrium exists always. If free

disposal is not allowed, then, the equilibrium may or may not exist, which depends, partly, on the

structure of the technology set: if the technology set is too poor, then, the equilibrium is not likely to

exist; if it is quite rich, then, the equilibrium is likely to exist.

This is a di�erence between the ordinary CES case in 3.1 (including the Cobb-Douglas case) and

the Liontief case here. In the setting in 3.1, the equilibrium without free disposal and the equilibrium

with free disposal are equivalent.

In section 7, we will discuss the equilibrium existence problem in another setting.
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4 Empirical Patterns of Technology Choices

In this section, we �rst compute the technology choices and technology frontiers from observed data

of endowment and factor returns. Further we show empirical patterns consistent with our model

predictions.

4.1 Data description

We compute technology choices for the US manufacturing industries. We use the NBER-CES Manu-

facturing Industry Data for the US, which covers 459 ISIC within the manufacturing sectors from 1958

to 2011. The key variables we use include the value added y, real capital stock k, total employment l

as well as wage payment, of each industry in each year. We devide the wage payment by employment

for each industry to obtain wage. The rental price is computed as (y − wl)/k. The value added is

normalized by price index of shipment. The capital stock is provided in real terms. The wage is

de�ated by annual CPI, provided by the Penn World Table 9.0. The data we use are summarized in

the following Table 2. The total observation is 24,674 in 54 years.

Table 2: Descriptive Summary

Variable Obs Mean Std. Dev. Min Max

emp 24676 36.3438 51.1565 0.1 565.4
pay 24676 784.571 1479.516 5 22245.3
cap 24676 2436.416 5844.753 3.7 105477.7
vadd 24676 2382.981 5506.654 10.2 111665.7

4.2 Computation of Technology Choices

Now, we compute the technology choice of ai, bi. By Corollary 1, we know that for any i,

ai =
r

pi

(
rKi

rKi + wLi

) 1−ρi
ρi

,

bi =
w

pi

(
wLi

rKi + wLi

) 1−ρi
ρi

.

And hence, we are able to solve for ai and bi using data on Ki, Li, r and w, after calibrating parameter

ρi.

We assume ρi = ρ0 for all i, where ρ0 is some constant. The parameter ρ0 is determined by

the elasticity of substitution between e�ective capital and labor 1/(1 − ρ0), which has attracted a

considerable amount of attention in macro literature. Leon-Ledesma et.al (2010) provides a summary

of capital-labor substitution elasticity in production for US. Most practices in literature suggest the

value to be above 0.5 and lower than 1, suggesting capital and labor in production function to be

complements, instead of substitutes. For example, Bodkin and Klein (1967) suggests 0.5 to 0.7,

Panik (1976) suggests 0.76, Leon-Ledesma and Satchi (2017) suggests 0.2, etc. Wang et.al (2018)

and Knoblach et.al (2016) provide a nice review. Knoblach et.al (2016) utilizes 738 estimates from

22



41 studies published between 1961 and 2016 and �nds the estimates of long-run elasticity lies in the

range between 0.6 to 0.7. In our excise, we try di�erent values of 1/(1− ρ0) between 0.5 and 0.8.

4.3 Estimating Technology Frontiers

After computing technology choices ai and bi, we follow Caselli and Coleman (2006) to estimate each

industry's technology frontiers ( aimi )
σi + ( bini )

σi = 1 in each year.

We assume σi = σ for all i, where σ is some constant. By Corollary 1, we get that for any i,

ησ−ρ0i = kρ0i γ
−σ
i ,

it follows that

log ηi =
ρ0

σ − ρ0
log ki −

σ

σ − ρ0
log γi.

Then, we conduct the following regression:

log ηit = β log kit + εit,

where β is the regression coe�cient, and εit is the error.

Fron this regression, we can get the estimates of σ and γi. Together with the formula of technology

frontier, we have estimates of mi and ni for each industry in each year. The following Table 3 sum-

marizes our estimated of parameters. We can see the values are consistent with technical assumption

A3.

Table 3: Table of Coe�cients
Parameter σ τ ρ0 ε
Value -0.30 -0.50 -1.00 0.43

4.4 Empirical Findings

Finding 1: The change in technology choices with increasing capital endowment.

Firstly, we test Proposition 2 of the model. Table 4 shows results of a regression where the depen-

dent variables is technology choice ηit (in log), and independent variables are aggregate endowment

K0/L0 (in log) and the technology frontiers we computed from section 4.3 mit/nit (in log). We con-

trol for industry �xed e�ect in each regression, so the coe�cients captures within-industry response of

technology choices to the increase in aggregate capital endowment and changes in technology frontiers.

Column 1 uses the benchmark calibration of coe�cient ρ0. We �nd the results are robust to

di�erent values of calibrated coe�cient ρ0. We �nd the coe�cient on capital endowment and on

technology frontiers mit/nit are both negative, consist with the model. With more abundant capital

endowment, US industries choose more labor-e�cient technologies.

Figure 6 is a more straightforward illustration of the result. The graph shows the local polyno-

mial �tness curve of the technology choices a and b for all US manufacturing industries along time.
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Table 4: Technology Choices, Endowments and Frontiers

(1) (2) (3) (4)

log(η) log(η) log(η) log(η)

1/(1− ρ0) 0.4 0.5 0.6 0.7

log(K0/L0) -
0.485***

-
0.554***

-
0.656***

-
0.826***

(-17.76) (-19.77) (-22.49) (-26.23)
log(m/n) -

0.066***
-
0.049***

-0.024* 0.017

(-6.24) (-4.07) (-1.68) -0.92

N 25386 25386 25386 25386
r2 0.313 0.317 0.349 0.424

Consistent with our regression �ndings, we observe rising in labor augmenting factor b and lowering

capital augmenting factor a.

Figure 6: Technology Choices in US

Finding 2: Structural Change with increasing capital endowment.

Next, we test the Model Proposition 3 by investigating pattens of structural change, regarding

capital intensity. The fact is �rst documented by Ju et.al (2015), where industries are de�ned with its

capital intensity. We keep the de�nition of industry of SIC, and look into structural change. Figure

7 shows the distribution of industrial sizes over capital intensity (capital income share) in the US in

di�erent years. In the left panel, we use the 4-digit industries. The horizontal axis is the sectoral

average capital share, measured by one minus labor income share in value added. The vertical axis

is the sectoral value added share in total value added of manufacturing industries. The line is local

polynomial �t curve. The graph shows that, industries with high capital share gain larger share in

total economy; while the labor intensive industries lose share. In the right panel, we show the results

when industries are at 2-digit. The results are qualitatively the same. To sum up, the pattern con�rms

structural change towards capital intensive industries, with more rigorous de�nition of industries.
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Figure 7: Structural Change in US

5 Simulation and Counter-factual Analysis

5.1 Simulation of the Model

In this section, we simulate our model, and conduct the counterfactual test of how the structural

change would be a�ected by �rms' technology choices. The counterfactual test would show the novelty

of this paper to jointly consider structural change and technology choices. The simulation is based

on calibration of exogenous parameters. First, we take into the parameters we estimated in the last

section. Then the parameters to further calibrate include demand shifter θit for each industry i in

year t and the constant ρ in the CES utility function. We assume the elasticity of substitution between

di�erentiated products is 5 and calibrate ρ as 0.8.

In this section, we group all US manufacturing sectors to �ve groups, from labor intensive to capital

intensive, based on the average capital intensity in the whole sample period. We plot the subsequent

capital intensities of the �ve re-grouped industries in Figure 8. The �gure shows that the capital

intensity is increasing in each group of industries, and the relative order remain stable overtime. The

pattern we show is consistent with the model prediction.

Figure 8: Capital Intensities in US
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We estimated technology frontier using the same method from the last section, Figure 9 shows the

changes in the γit = mit/nit. We can see that the technology frontier parameter γit was generally

rising in each industry. The model predicts that, a rising γit induces increasing capital intensity, yet

declining in ait/bit when capital and labor are complementary.

Figure 9: Estimated Frontier mit/nit in US

We then lay out the procedures to simulate the model.

Step 1:

The �rst step is to use the data of industrial value added share to back out the demand shifter

θi for each sector, using equation from section 3.6. The calibrated demand shifters θit are shown

in Figure 10. We �nd the demand shifters are relatively more stable than the technology frontiers,

showing an declining pattern in industry 1 and 5, and increasing pattern in 2 and 3, stable but with

some unstable change after 2000 in industry 4.

Figure 10: Calibrated Demand Shifter θit in US

Step 2:
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In each counterfactual analysis, the factor price is solved by equation (2). It is worth noting

that in the model we assume uniform factor price in all sectors, while in the data, each sector has

heterogeneous factor price4.

Step 3:

Solve for counterfactual variables of capital, labor, value added share, using equation in section

3.6. The results are shown in the next subsection.

5.2 Industrial Structure without Technology Choices

Taking m and n in the �rst year as �xed in the whole sample period, and solve the model. Figure

11 shows that value added shares of each industry over time, where the blue line is the benchmark

model, while the red line is the counterfactual model. It shows that the changes in industry 1-3 are

similar between benchmark and the counterfactual models, while the increasing value added shares

in industry 4 and 5 would be delayed when there were no technology progress. It implies that the

consideration of technology choices are essential in explaining the structural change, since the changes

in technology choices improves the optimality in the use of factors, thus accelerate the structural

change.

Figure 11: Counter-factual Structural Change

Figure 12 further shows an example of how the industrial structure is like in three di�erent years,

with the upper panel indicating the benchmark model and the lower panel as the counterfactual model.

It shows that in both models, the industrial structure moves from labor intensive to capital intensive

sectors. The counterfactual model shows slower rate in structural change.

4In the counterfactual analysis, we use the model predictions under baseline parameters, to compare with the model
predictions under counterfactual parameters.
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Figure 12: Counter-factual Structural Change: Three Years Example (upper: benchmark, lower:
counterfactual)
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6 Alternative approach

In the above analysis, one of the fundamental points is how to de�ne the set of feasible technologies

for choice.

To this end, we can modify the above model framework and take an alternative approach as follows.

There are only n industries, for any i = 1, ..., n, the possible production functions of the industry

i are

Fi(K,L) = Kαi(AiL)βi ,

and

αi ∈ [αi, αi],

where K ≥ 0, L ≥ 0 are the physical capital and human capital, respectively, and βi = 1 − αi, and
0 < αi < αi < 1 and Ai > 0 are given, here Ai can be interpreted as labor augmenting factor.

And, for simplicity, we only consider a Cobb-Douglas type utility function, that is, we assume that

the utility function of each consumer is

U(C1, C2, ..., Cn) =

n∏
i=1

Cθii ,

where Ci ≥ 0 is the �nal good of the i-industry the consumer consumes, and θi ∈ (0, 1) is given,

satisfying
∑n
i=1 θi = 1.

And, moreover, we assume that in each industry, there are more than one but �nite number of

�rms, and each �rm can take only one technology. We notice that this assumption can be modi�ed

furthermore.

First of all, in each industry, facing any given price system (the product price p > 0, the capital

price r > 0 and the labor price ω > 0), if two �rms take the same technology α, then, the capital-labor

ratio's for them will be the same. In fact, if the optimization problem

max pKαLβ − rK − ωL,

s.t. K ≥ 0, L ≥ 0

has non-zero solution, then, the solution satis�es that

r = αk−β ,

and hence,

k =
(α
r

)1/β
,

where

k =
K

L

is the capital-labor ratio.

Therefore, in one industry, any �rms, each of which take the same technology, have the same

capital-labor ratio, and hence can be "combined" into one �rm, that is, if for any i = 1, ..., J , where
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J is some natural number, it holds that

Yi = Kα
i L

β
i , k =

Ki

Li
,

where k > 0 is �xed, then,

Y = KαLβ ,

where

Y =

J∑
i=1

Yi, K =

J∑
i=1

Ki, L =

J∑
i=1

Li.

In the sequel, we do not distinguish the following two cases: there is only one �rm taking technology

α and capital-labor ratio k and produce Y ; there are J �rms, each of which takes the same technology

α and capital-labor ratio k, and

Y =

n∑
i=1

Yi,

where Yi is the production of the i−�rm. Put it another way, in fact, we consider a speci�c clas-

si�cation: in each industry, any two groups of �rms can be said as equivalent, if all �rms in these

two groups take the same technology and capital-labor ratio, and the sums of productions in the two

groups are equil to each other.

Secondly, by Lemma 2, we know that facing any �xed prices system, any �rm will take the extreme

technology, that is, either α = α or α = α. Now, we consider an industry, in which there are two �rms,

taking technologies α and α respectively. Then, clearly, for any �xed p > 0, r > 0, ω > 0, solving the

optimization problem

max p
(
K
α
1 L

β

1 +Kα
2 L

β
2

)
− r(K1 +K2)− ω(L1 + L2),

s.t. Ki ≥ 0, Li ≥ 0, i = 1, 2

is equivalent to solving the following two optimization problem simultaneously

max pK
α
1 L

β

1 − rK1 − ωL1,

s.t. K1 ≥ 0, L1 ≥ 0,

and

max pKα
2 L

β
2 − rK2 − ωL2,

s.t. K2 ≥ 0, L2 ≥ 0.

And hence, the two �rms can also be "combined" into one �rm.

Based on the above consideration, we now give our modi�cation in another equivalent way: in

each industry, there is only one �rm, but it can take a "mixed" technology, that is, it can take the

two extreme technologies simultaneously, all else remain unchanged.

Notice that, in fact, in this case, for any i = 1, ..., n, in the i−industry, the total production

30



possibility set Y ′i is the sum of the production possibility sets for each technology, which is the union

of the sum of any �nite number of the production possibility sets for each technology. Here, the

meaning of "sum" of any �nite number of sets is as follows: for any sets S1, ..., Sn in some same

Euclidian space, where n ia a natural number,

n∑
i=1

Si =:

{
n∑
i=1

si

∣∣∣∣∣si ∈ Si, i = 1, ..., n

}
.

Clearly, if the "mixed" technology is not allowed, that is, an �rm can only take one technology

(we say it takes only pure technology), then, in the i−industry, the total production possibility set Yi
in that case is just the union of the production possibility sets for each technology.

It's easy to see that Y ′i is just the convex hull of Yi and hence convex, although Yi is not convex.
And, the e�cient frontier for Y ′i is the just the set of (Y,−K,−L) satisfying K ≥ 0, L ≥ 0, and

Y = max
(
K
αi
1 L

β
i

1 +Kαi
2 L

βi
2

)
,

s.t.
K1 +K2 = K, L1 + L2 = L,

Ki ≥ 0, Li ≥ 0, i = 1, 2.

By the way, it's easy to see that for the last optimization problem, suppose that K > 0, L > 0, and

denote k = K/L, and denote the solution of this problem as K∗1 ,K
∗
2 , L

∗
1, L
∗
2, then,

K∗1 > 0, L∗1 > 0,K∗2 = 0, L∗2 = 0,

if and only if

k ≤ Bi;

and

K∗1 > 0, L∗1 > 0,K∗2 > 0, L∗2 > 0,

if and only if

Bi < k < Bi;

and

K∗1 = 0, L∗1 = 0,K∗2 > 0, L∗2 > 0,

if and only if

k ≥ Bi,

where

Bi =

(αi
αi

)αi (β
i

βi

)βi 1
αi−αi

,

Bi =

[(
αi
αi

)αi (β
i

βi

)β
i

] 1
αi−αi

.
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That is, when and only when the capital-labor ratio is allocated in some interval, not too large and

not too small, the �rm will take a mixed technology.

As to the two quantities Bi and Bi, we point out that, in fact, in the k − y plane, Bi is just the

k−coordinate of the tangency point of the curve y = kαi and the line L, and Bi is the k−coordinate
of the tangency point of the curve y = kαi and the line L, where L is the joint tangent line of the

above two curves.

6.1 General equilibrium and its solution

Now, we give our formal de�nition of general equilibrium in this setup as follows.

De�nition 2.
(
C∗i ;K∗ij , L

∗
ij ; p

∗
i , r
∗, ω∗

)
i=1,...,n,j=1,2

is an equilibrium, where, for any i, j,

C∗i ≥ 0,

K∗ij ≥ 0, L∗ij ≥ 0,

p∗i ≥ 0, r∗ ≥ 0, ω∗ ≥ 0,

if

(I)

(C∗1 , ..., C
∗
n) ∈ arg max

C1,C2

U(C1, ..., Cn),

s.t. ∑n
i=1 p

∗
iCi ≤ r∗K0 + ω∗L0,

Ci ≥ 0, i = 1, ..., n;

(II) for any i = 1, 2,

(K∗i1,K
∗
i2, L

∗
i1, L

∗
i2)

∈ arg max
Ki1,Ki2,Li1,Li2

{
p∗i

(
K
αi
i1 (AiLi1)βi +Ki2)αi(AiLi2)βi

)
− r∗(Ki1 +Ki2)− ω∗(Li1 + Li2)

}
,

s.t.

Kij ≥ 0, Lij ≥ 0, j = 1, 2;

(III)

C∗i = (K∗i1)
αi (AiL

∗
i1)

β
i + (K∗i2)

αi (AiL
∗
i2)

βi , i = 1, 2, ..., n,∑
i,j

K∗ij = K0,∑
i,j

L∗ij = L0.

Remark 6. One can see that in this setup, if
(
C∗i ;K∗ij , L

∗
ij ; p

∗
i , r
∗, ω∗

)
i=1,...,n,j=1,2

is an equilib-

rium, then, for any i,

C∗i > 0, p∗i > 0, r∗ > 0, ω∗ > 0,

and for any i, j, Kij = 0 if and only if Lij = 0.

32



For any i = 1, ..., n, we denote

τi =

ααii ββii
ααii β

βi
i

1/(αi−αi)

, σi = Aiτi.

We arrange σ1, ..., σn in increasing order. For simplicity of the notation, without any loss of generality,

we assume

σ1 ≤ σ2 ≤ ... ≤ σn.

We then rank the industries accordingly.

Now, we introduce our key notations. For any i = 1, 2, ..., n, denote

k∗2i−1 =

∑
j<i θjαj +

∑
j≥i θjαj∑

j<i θjβj + +
∑
j≥i θjβj

σi.

k∗2i =

∑
j≤i θjαj +

∑
j>i θjαj∑

j≤i θjβj +
∑
j>i θjβj

σi.

Clearly,

0 < k∗1 ≤ k∗2 ≤ k∗3 ≤ ... ≤ k∗2n <∞.

For simplicity, we denote k∗0 = 0, k∗2n+1 =∞, and σ0 = 0, σ2n+1 =∞.

For convenience, we introduce some further notations. For industry i = 1, ..., n, if the �rm i takes

the low technology αi, then, we denote this matter as i; if it takes the high technology αi, we denote it

as i; if it takes both technologies, or put it another way, it takes a mixed technology, then, we denote

it as i. Then, �rm i has three choices: i, i, i. Clearly, there are totally 3n cases for the combination

of the n industries to choose their technologies, and at least one happens, and this comes from the

classical Arrow-Debreu general equilibrium existence theorem.

However, somewhat surprisingly, among the 3n cases, there are in fact only 2n+ 1 cases happen.

Theorem 3. For any k0 > 0, there exists unique equilibrium
(
C∗i ;K∗ij , L

∗
ij ; p

∗
i , r
∗, ω∗

)
i=1,...,n,j=1,2

,

the solution of which is determined as follows. For this k0 > 0, there exists unique t ∈ {0, 1, ..., n}
such that either

k∗2t < k0 < k∗2t+1,

or

k∗2t−1 ≤ k0 ≤ k∗2t.

(i) If

k∗2t < k0 < k∗2t+1,

then, for any i ≤ t, happens i; for any i > t, happens i, and
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K∗i1 = 0, K∗i2 =
θiαi∑

j≤t θjαj +
∑
j>t θjαj

K0, ∀i ≤ t,

K∗i1 =
θiαi∑

j≤t θjαj +
∑
j>t θjαj

K0, K∗i2 = 0, ∀i > t;

L∗i1 = 0, L∗i2 =
θiβi∑

j≤t θjβj +
∑
j>t θjβj

L0, ∀i ≤ t,

L∗i1 =
θiβi∑

j≤t θjβj +
∑
j>t θjβj

L0, K∗i2 = 0, ∀i > t;

The prices are determined by the following relations:

r∗

p∗i
= αig

−β
i

i1 ,
ω∗

p∗i
= Aiβig

αi
i1 , ∀i ≤ t,

r∗

p∗i
= αig

−βi
i2 ,

ω∗

p∗i
= Aiβig

αi
i2 , ∀i > t.

(ii) If

k∗2t−1 ≤ k0 ≤ k∗2t,

then, for any i < t, happens i; for i = t, happens i; for any i > t, happens i, and

K∗i1 = 0, K∗i2 = θiαi (K0 + σtL0) , ∀i < t,

K∗i1 = θiαi (K0 + σtL0) , K∗i2 = 0, ∀i > t,

K∗t1 =

∑
j≤t θjβj +

∑
j>t θjβj

αt/αt − 1

(
k∗2t
k0
− 1

)
K0,

K∗t2 =

∑
j<t θjβj +

∑
j≥t θjβj

1− αt/αt

(
1−

k∗2t−1
k0

)
K0,

L∗t1 =

∑
j≤t θjαj +

∑
j>t θjαj

1− βt/βt

(
1− k0

k∗2t

)
L0,

L∗t2 =

∑
j<t θjαj +

∑
j≥t θjαj

β
t
/βt − 1

(
k0

k∗2t−1
− 1

)
L0.

The prices are determined by the following relations:

r∗

p∗i
= αig

−β
i

i1 ,
ω∗

p∗i
= Aiβig

αi
i1 , ∀i ≤ t,

r∗

p∗i
= αig

−βi
i2 ,

ω∗

p∗i
= Aiβig

αi
i2 , ∀i ≥ t.
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And in all of the above two cases,

C∗i = (K∗i1)
αi (AiL

∗
i1)

β
i + (K∗i2)

αi (AiL
∗
i2)

βi , ∀i = 1, ..., n,

where

kij =
K∗ij
L∗ij

, gij = kij/Ai, ∀i = 1, ..., n, j = 1, 2.

From this theorem, we get the following corollary about the pattern of the change of the relative

price of labor over capital along with the change of k0.

Corollary 7. With respect to k0, the equilibrium relative price of labor over capital ω∗/r∗ is

increasing, continuous and piecewise linear, the graph of which is a fold line, more precisely,

ω∗

r∗
=


σt

k∗2t−1
k0, k∗2t−2 < k0 < k∗2t−1, t = 1, ..., n,

σt, k∗2t−1 ≤ k0 ≤ k∗2t, t = 1, ..., n,
σn
k∗2n

k0, k0 > k∗2n.

From this theorem, we get the following proposition about the technology upgrading, which is

similar to the Proposition 5 in the above model framework.

Proposition 6. (Technology upgrading) In the alternative model framework, along with the

increase of capital per capita of the society, each industry experience three phases of technology upgrad-

ing: low technology, mixed technology and high technology technology; the industries take technology

upgrading sequentially, one industry starts to upgrade, after its previous industry has completed its

upgrading; and the economy as a whole experiences 2n+ 1 phases of technology upgrading.

Now, we consider the social planner's problem. In this setup, the social planner's problem can be

stated as follows:

max

n∏
i=1

Cθii ,

s.t. Ci = K
α1
i1 (AiLi1)β1 +Kα1

i2 (AiLi1)β1 , i = 1, ..., n,∑
ij

Kij = K0,
∑
ij

Lij = L0,

Kij ≥ 0, Lij ≥ 0, i = 1, .., n, j = 1, 2.

One can prove that this social planner's problem has a unique solution in any case.

Remark 7. If any �rm is allowed to take only pure technology but not mixed technology, then,

from theorem 3, we know that the equilibrium may not exist for some structure of factor endowment.

But, even in the case, where only pure technology is allowed, the social planner's problem has (unique)

solution, and of course, its outcome is Pareto e�cient. Therefore, in this case, the second welfare

theorem does not hold, that is, there is a Pareto e�cient allocation which can not be achieved by the

market competition.
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We give an example.

Example. Let n = 2, A1 = A2 = 1, and

θ1 = θ2 = 1/2,

[α1, α1] = [1/4, 2/4],

[α2, α2] = [2/4, 3/4].

In this case, we have that

τ1 =
27

16
, τ2 =

16

27
,

and

k∗1 =
16

45
, k∗2 =

16

27
, k∗3 =

27

16
, k∗4 =

45

16
.

And hence, if

k0 ≤ 16/45,

or

k0 ∈ [16/27, 27/16],

or

k0 ≥ 45/16,

then any �rm takes pure technology, and (α∗1, α
∗
2) is equal to

(1/4, 2/4),

or

(1/4, 3/4),

or

(2/4, 3/4),

respectively.

If

k0 ∈ (16/45, 16/27)

or

k0 ∈ (27/16, 45/16),

then at least one �rm takes mixed technology. And hence, if only pure technology is allowed, then, in

this case, the equilibrium does not exist.

Clearly, in the case, where mixed technologies are allowed, the economy will experience 5 phases

of technology upgrading along with the increase of k0.
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6.2 Extreme case

In the above setting, we avoid the cases, where the αi's can touch 0 or 1, that is, the technology relies

only on labor or capital. In this subsection, we consider the extreme case, where

αi ∈ [0, 1], i = 1, ..., n,

that is, by the notations used above, for any i = 1, ..., n,

αi = 0, αi = 1.

For simplicity, we assume that Ai = 1 for all i.

In this setting, we know that each �rm only takes the extreme technologies. And hence, for simplic-

ity, we say (C∗i ;K∗i , L
∗
i ; p
∗
i , r
∗, ω∗)i=1,...,n,j=1,2 is an equilibrium, if

(
C∗i ;K∗ij , L

∗
ij ; p

∗
i , r
∗, ω∗

)
i=1,...,n,j=1,2

is an equilibrium by the above standard notation, where Ki1 = 0 = Li2, and Ki2 = Ki, Li1 = Li.

Theorem 4. There exists multiple equilibria. And, (C∗i ;K∗i , L
∗
i ; p
∗
i , r
∗, ω∗)i=1,...,n,j=1,2, is an

equilibrium, if and only if

C∗i = K∗i + L∗i = θi(K0 + L0),

K0 =

n∑
i=1

K∗i ,

L0 =

n∑
i=1

L∗i

r∗ = ω∗ = p∗i > 0, ∀i.

Corollary 8. In this extreme setting, if only pure technologies are allowed, then, the equilibrium

exists, if and only if there exists a subset J ⊂ {1, ..., n} such that

k0 =

∑
i/∈J θi∑
i∈J θi

.

For example, if n = 2, then, if only pure technologies are allowed, then, then equilibrium equilib-

rium exists, if and only if k0 = θ2/θ1 or k0 = θ1/θ2. And hence, the cases of equilibrium existence are

rare.

The extreme case in this subsection is not interesting in the sense that the equilibrium prices are

all equal, and hence, we can not investigate the relative price change along with the change of the

endowment structure. But, we put it here as a contrast to the above formal setting. By this contrast,

one can see why we set up our main model framework as above. In addition, the extreme technologies

do not coincide with the reality, in any industry nowadays in the real world uses only labor or only

capital.
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7 Extension to Dynamic model

Following the idea of Ju. et al (2015), we can extend the above static model to dynamic one, through

which we will see that the capital per capita is increasing along with time going, and then, with the

help of the comparative static analysis above, we can characterize the industrial dynamics along with

the time passing.

7.1 Basic model

We now consider a closed economy, which exists on the whole time interval [0,∞). The population

keeps constant, more concretely, there are �nite number of homogeneous individuals, each is alive on

the whole time interval [0,∞), owning initial endowments at time t = 0 the physical capital Z0 > 0

and labor L0 = 1, with life long utility function

U =

∫ ∞
0

e−δtu(C(t))dt,

where δ > 0 is his time discount rate, and C(t) is his consumption at time t, and

u(C) =
C1−θ − 1

1− θ
,

where θ ∈ (0, 1].

We assume that there is only one consumption good, and at any time point t, in this economy,

there are three types of sectors. The �rst type: there are continuum of sectors on the interval [0, 1],

each producing intermediate goods by use of capital and labor; the second type: there is only one

sector, producing the �nal consumption good by use of all the intermediate goods; the third type:

there is only one sector, producing capital good by use of capital only.

The production in each sector is as follows. For the �rst type sector, the production is set up as

in 3.1. For the second type sector, the production function is

C =

(∫ 1

0

θiC
ρ
i di

)1/ρ

,

where ρ ∈ (0, 1) as in 3.1, and Ci is the intermediate good i, and C is the �nal consumption good.

This is just the welfare function set up in 3.1. The setup here can be seen as equivalent to that in 3.1

in the sense that we can interpret the welfare in the setup in 3.1 as the �nal good.

For the third type sector, the production is proceeded by an AK technology, which itself comes

from the e�ect of learning by doing.

And, at any time, each capital owner will take out some of his capital to sell to the second type

sectors in the capital market, and sell his labor to the second type sectors in the labor market, and

earn his income to buy the �nal consumption good to support his living.

We emphasize that in this setting, the capital good is di�erent from other goods, including the in-

termediate goods and the �nal consumption good. The capital good can not be used in the production

of the �nal good, and is not consumed like the �nal consumption good. For the individual the capital

is only a tool to get income. None of intermediate goods and the �nal good can be accumulated, they
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are used up for production or consumed up once they are produced.

And hence, the capital stock movement equation of this economy is as follows:

Ż(t) = aZ(t)−K(t), ∀t ≥ 0,

where Z(t) is the capital stock at time t, and a > 0 is a constant, and K(t) is the working capital at

time t, which is supplied to the second type sectors. We assume that a > δ.

As usual, we assume that all markets are competitive, and all �rms can survive only instantly.

Now, we can de�ne the dynamic equilibrium in the standard way. For simplicity, without any loss of

generality, we may assume that the number of individuals is 1, and the his labor is normalized to be

1. And, we assume that the price of the �nal good is 1.

We make a convention as usual that all variables here are nonnegative, and for simplicity, in any

optimization problems, the nonnegative constraints are omitted to write out explicitly.

De�nition 3. (p∗i (t), r
∗(t), ω∗(t), a∗i (t), b

∗
i (t),K

∗
i (t), L∗i (t), C

∗
i (t), C∗(t),K∗(t), Z∗(t))i∈[0,1],t≥0 is

called an (dynamic) equilibrium, if

(Z∗,K∗, C∗) ∈ arg max
Z,K,C

∫ ∞
0

e−δtu(C(t))dt,

s.t.

Ż(t) = aZ(t)−K(t),

C(t) ≤ r(t)K(t) + ω(t), ∀t,

Z(0) = Z0;

and for any i ∈ [0, 1] and any t ≥ 0,

(a∗i (t), b
∗
i (t),K

∗
i (t), L∗i (t))

∈ arg max
a,b,K,L

{
p∗i (t) ((aK)ρi + (bL)ρi)

1/ρi − r∗(t)K − ω∗(t)L
}
,

s.t. (
a

mi

)σi
+

(
b

ni

)σi
= 1;

and for any t ≥ 0,

(C∗i (t))i∈[0,1] ∈ arg max
(Ci)i∈[0,1]

{(∫ 1

0

θiC
ρ
i di

)1/ρ

−
∫ 1

0

p∗i (t)Cidi

}
;
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and

C∗i (t) = ((a∗i (t)K
∗
i (t))ρi + (b∗i (t)L

∗
i (t))

ρi)
1/ρi , ∀i, t,

C∗(t) =

(∫ 1

0

θi(C
∗
i (t))ρdi

)1/ρ

, ∀t,∫ 1

0

K∗i (t)di = K∗(t), ∀t,∫ 1

0

L∗i (t)di = 1, ∀t.

Here, all the parameters ρ, ρi, σi,mi, ni are as in 3.1. From this de�nition, one can easily see that

all prices are strictly positive (in the sense of Lebesgue measure). We can prove that the equilibrium

exists and is unique in the sense of Lebesgue measure.

It's worth mentioning that there is a little bit di�erence between this setting and the setting in

3.1 for the treatment of production. In 3.1, only a proportion between any two di�erent prices is

determined, but here, since we set the price of the �nal good to be 1, and hence, all other prices will

be determined uniquely.

The social planner's problem in this setting is

max

∫ ∞
0

e−δtu(C)dt,

s.t. Ż = aZ −K,

C =

(∫ 1

0

θiC
ρ
i di

)1/ρ

,

Ci = ((aiKi)
ρi + (biLi)

ρi)
1/ρi , i ∈ [0, 1]

(ai/mi)
σi + (bi/ni)

σi = 1, i ∈ [0, 1],∫ 1

0

Kidi = K,

∫ 1

0

Lidi = 1,

Z(0) = Z0.

Here, for simplicity, we omit to write out (t) for all dynamic variables, for example, in the above

dynamic optimization problem, Z is Z(t), Ki is Ki(t), etc. In the sequel, we will use these simple

notations, if only it does not induce any confusion, and for any di�erential equation, we omit to write

out ∀t ≥ 0.

It's easy to see that solving this problem is equivalent to solving the following two problems

sequentially. First step, solve the problem P1

C = W (K) = max

(∫ 1

0

θiC
ρ
i di

)1/ρ

,

s.t. Ci = ((aiKi)
ρi + (biLi)

ρi)
1/ρi , i ∈ [0, 1]

(ai/mi)
σi + (bi/ni)

σi = 1, i ∈ [0, 1],∫ 1

0

Kidi = K,

∫ 1

0

Lidi = 1;
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then, second step, solve the problem P2:

max

∫ ∞
0

e−δtu(W (K)dt,

s.t. Ż = aZ −K,

Z(0) = Z0.

The �rst problem P1 is just the social planner's problem in the static model as in 3.4, from there

we know that

W (K) =

(∫ 1

0
θ
1/(1−ρ)
i

(
ni(1 + (γiz)

δi)1/δi
)ρ/(1−ρ)

di∫ 1

0

[
θin

ρ
i (1 + (γiz)δi)ρ/εi−1

]1/(1−ρ)
di

)1/ρ

,

and z is determined by the equation

K =
z1/(1−ρ)

∫ 1

0

[
θim

ρ
i

(
1 + (γiz)

−δi
)ρ/εi−1]1/(1−ρ)

di∫ 1

0

[
θjn

ρ
j (1 + (γjz)δj )

ρ/εj−1
]1/(1−ρ)

dj

.

One can verify that W is a smooth function, satisfying W (0) = 15, W (∞) =∞, and for any K > 0,

W ′(K) > 0, W ′′(K) < 0, that is, W is strictly increasing and strictly convex, and W ′(0) = ∞,

W ′(∞) = 0.

One can verify directly that the outcome of the dynamic equilibrium is just the solution of the

social planner problem. Therefore, in our setting, the �rst welfare theorem still holds. That is, the

market competition leads to a Pareto e�cient allocation.

Let's look at the social planner problem P2 in more detail. It's a standard optimal control problem.

Obviously, the Mangasarian su�ciency condition is satis�ed, and all variables are non-negative, and

of course, the linear independence constraint quali�cation is also satis�ed, that is , this problem is a

regular problem, and hence, if we denote this problem's current value Hamiltonian function as

H = u(W (K)) + λ(aZ −K),

then, (K(t), Z(t))t≥0 is the solution of this problem, if and only if there exists a continuous and

piecewise smooth (λ(t))t≥0 such that

0 = HK = C−θW ′(K)− λ, (8)

−λ̇+ δλ = HZ = aλ, (9)

and TVC,

lim
t→∞

e−δtλ(t)Z(t) = 0.

5This might be interesting, because with no working capital, the �nal good is not 0. However, this is not surprising,
since in the ordinary CES function, capital and labor are substitutable, although imperfectly, the production can be
proceeded, even if there is no capital, because labor exists and can be used always.
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From (8), we have that λ(t) > 0, for any t ≥ 0, and from (9), we get that the growth rate of λ is

λ̊ = δ − a. (10)

Here, λ̊ = λ̇/λ. In the sequel, for any positive dynamic variable, we use the notation˚to denote its

growth rate.

It's well known that at any time point t ≥ 0, λ(t) is just the shadow price of capital stock Z(t).

Note that there is no market for capital stock, therefore, there is no market price for it. Its shadow

price is the representation of its true value to the economy. This shadow price is declining to 0

exponentially, which means that the capital is becoming less and less scarce. And, correspondingly,

the capital stock is increasing continuously and monotonically to in�nity.

Also from (8),(9), we can get the movement equation of K:

K̇ =
a− δ

θ
W (K) −

W ′′(K)
W ′(K)

.

And hence, K̇ > 0 for all t ≥ 0. Therefore, along the equilibrium path, the working capital is strictly

increasing. And, without any di�culty, one can prove that K(t) → ∞ as t → ∞. Since C = W (K),

and hence, the �nal consumption good is strictly increasing to the in�nity also, along the equilibrium

path. Therefore, this economy has no steady state and grows up forever.

From the TVC and the movement equation of the capital stock Ż = aZ −K and the initial value

condition Z(0) = Z0, we obtain

Z0 =

∫ ∞
0

e−atK(t)dt.

This says that taking the "intrinsic growth rate" of the capital stock as the discounting rate, the

present value of the working capital �ow is just the initial capital stock. In other words, the initial

capital stock, operated well by the individual, can just support the demand of working capital, and

will be used up �nally. And, this relationship does not concern with the social discount rate at all.

Just as in 3.1, one can see that there exist smooth decreasing function f and increasing function

g such that along the dynamic equilibrium path, it holds that r = f(K), ω = g(K). Then, ṙ =

f ′(K)K̇ < 0, ω̇ = g′(K)K̇ > 0. Therefore, the real market price of working capital is decreasing, the

market price of labor is increasing.

Noticing that C = rK + ω, and hence,

W (K) = f(K)K + g(K). (11)

Denote κ = W ′(K). This κ is just the shadow price of working capital K. We have that κ̇ =

W ′′(K)K̇ < 0, and hence, the shadow price of the working capital is decreasing, and hence, the

working capital, just like the capital stock, becomes less and less scarce.

We sum up the above analysis and give a proposition.

Proposition 7. Along the equilibrium path, the the capital stock, the working capital and the

�nal good are all strictly increasing to in�nity, and the economy grows up forever; the real market

price of working capital is decreasing, the market price of labor is increasing; the shadow prices of the

capital stock and the working capital are all decreasing to 0.
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From (8),(10), we get the following proposition.

Proposition 8. (One version of the Keynes-Ramsey rule). Along the equilibrium path, the growth

rate of �nal consumption good should satisfy

C̊ =
1

θ

(
κ̊− λ̊

)
.

That is, the growth rate of consumption good is di�erence between the growth rates of the shadow

prices of working capital and capital stock, divided by the consumer's Arrow-Pratt relative risk aver-

sion.

Noticing that Ċ > 0, then from the above proposition, we get that

0 > κ̊ > λ̊.

That is, the shadow price of the capital stock decreases more sharply than that of working capital,

so that comparing with the capital stock, the working capital is more scarce, although both of them

become less and less scarce.

From (11), it follows that

κ = r + ∆,

where ∆ = f ′(K)K + g′(K), which is the di�erence between the shadow price and the real market

price of the working capital.

We are interested in the sign of ∆, and even wonder if it holds that ∆ = 0. This problem is quite

complicated. Along the equilibrium path, maybe, the sign of ∆ changes. Intuitively, there exists

some threshold K∗ such that ∆(K∗) = 0, and on the two sides of this threshold, ∆ changes its sign,

maybe from negative to positive, or from positive to negative. ∆ > 0 means the market encourages

the individual to sell more working capital to the market; ∆ < 0 means the market restrains the

individual to sell more working capital to the market.

Summing up the above analysis, we get the �nal result.

Proposition 9. Driven by the market competition, and by the "learning by doing" of the indi-

viduals, the economy grows up forever. Along this process, each industry in the second type sectors

carries on continuously the technology upgrading, and the whole economy tends more and more to

capital intensive industries.

7.2 Modi�ed model

In the above model, the technology frontier for any industry in the second type sectors is �xed. In

fact, we can let them change, either exogenously or endogenously.

If we assume that mi, ni all increase exogenously, along time going, the corresponding technology

frontiers are extended outward. Then, all the treatment above works still, no any other technique is

needed. We omit it.

If we consider R&D, the social planner's problem can be written out easily, as in the usual way.

But, in our setting , if we want to �nd the micro-foundation for the R&D, in other words, we want to
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set up a micro-model to depict this economy, then, the problem will become quite complicated. This

will be our further work.

In addition, in fact, the static model in section 6 can also be extended to dynamic one, using the

same method here. And, in that alternative approach, the process of technology upgrading is more

clear, the industries take their technology upgrading sequentially, one by one, one starts immediately,

once its previous industry has completed its technology upgrading, and any industry experiences three

phases of technology upgrading form low technology, mixed technology to high technology, and totally,

the economy experiences 2n+1 phases, and �nally, all industries complete their technology upgrading.

The technology upgrading happens along with the increase of the working capital. And, just as in

the above, we can prove that in this alternative approach, the capital stock and working capital are

all increasing monotonically to in�nity.

We omit the detail.

8 Conclusion

This paper studies technology choices and structural change in a multi-sector economy. Our key

conclusion is that technology choices in each sector and structural change across industries are driven

by changes in endomwents. With an increase in capital endowment, industrial distribution moves

towards capital intensive sectors, capital intensity of each industry becomes larger, and �rms in

each industry are using more capital/labor augmenting technology when the elasticity of substitution

between capital and labor is larger/lower than one.

In this paper, we �rst build a multi-sector general equilibrium model to jointly discuss endowment

structure, structural change and technology choices. Our model extends Caselli and Coleman (2006) to

heterogeneous industries. The model shows that an increase in capital endowment drives up real wage,

and further a�ects industrial structure and technology choices. We extend the methodology proposed

by Caselli and Coleman (2006) to compute technology choices separately for panels of industries of the

US. We �nd the data pattern is consistent with three propositions derived from the model. Firstly, we

�nd US manufacturing industries use labor more e�ciently, while Chinese manufacturing industries

use capital more e�ciently, with the increase in total capital endowment. Secondly, we �nd robust

patterns of structural change in ISIC de�ned industries, from labor intensive to capital intensive

sectors; thirdly, over time, capital intensity of each industry is increasing, while the relative order of

capital intensity across industries remain stable.

We contribute to the literature by studying technology choices in multi-sector economy. Conven-

tional wisdom believes that the economic growth in East Asia is not sustainable since it is mostly con-

tributed by the capital accumulation rather than TFP growth, see Young (1995) and Krugman(1994).

This paper provides an argument against it. We show that with the capital accumulation, there is

continuous industrial upgrading towards the capital intensive sectors, accompanied by the adoption

of new technologies. This results in high growth rate with low TFP. We also emphasize that the

sequence of industrial upgrading and technology adoption depends on the endowment structure.

Our model predictions are consistent with empirical patterns. The model we build has elegant

closed solutions, providing a workhorse for multi-sector structural analysis. The model can be used to

analyze the sources of TFP growth, decomposing it into technological innovation (TFP) and changes

in the technologies and industries, driven by accumulation of factors, rather than attributing all of it to
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technological innovation. The model can also be used to study how �nancial structure should di�er in

countries with di�erent levels of development and capital intensities in industries(Lin, Sun and Jiang

2013, Lin, Cull and Demirguc-Kunt, 2013). By incorporating various frictions and market failures

into the model, we will be able to discuss di�erent policy options and the role of state in the economy,

for example by incorporating role of information, infrastructure and human capital in facilitating

structural change from small-scale labor-intensive industries to large-scale capital-intensive industries.

There will be a need for the government to provide information and the needed improvement in hard

and soft infrastructures as well as human capital in the process of industrial upgrading. Further, the

model can be used to explore the issues related to international trade and technology spill-overs across

countries at di�erent levels of development.
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Appendix I. Proofs

At �rst, we give two lemmas.

Lemma 1. For any k0 > 0, there exists a unique z satisfying (2), and this z is strictly increasing

with respect to k0.

Proof. In fact, it's easy to see that under the assumption A3, k0 as a function of z ∈ [0,∞)

is strictly increasing, taking values from 0 to ∞, accordingly. And this completes the proof of the

lemma.

Lemma 2. Assume that 0 < α < α < 1, a > 0, b > 0 are �xed. Then, (α∗,K∗, L∗) satisfying

α∗ ∈ [α, α], K∗ > 0, L∗ > 0

is a solution of the optimization problem

max
α,K,L

{
KαLβ − aK − bL

}
,

s.t.

α ∈ [α, α], β = 1− α, K ≥ 0, L ≥ 0,

if and only if

a = α∗(k∗)−β
∗
, (12)

b = β∗(k∗)α
∗
, (13)

where β∗ = 1− α∗, and k∗ = K∗/L∗, and

α∗ ∈ arg max
α∈{α,α}

{
β
(α
a

)α/β}
. (14)

Proof. Necessity. Notice that

(K∗, L∗) ∈ arg max
K,L

{
Kα∗Lβ

∗
− aK − bL

}
,

s.t.

K ≥ 0, L ≥ 0,

it follows (12) and (13) immediately, which implies that

(K∗)α
∗
(L∗)β

∗
− aK∗ − bL∗ = 0.

Noticing that for any K ≥ 0, L > 0,

KαLβ − aK − bL = L (kα − ak − b) ,
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where k = K/L, therefore,

(α∗, k∗) ∈ arg max
α,k

(kα − ak) ,

s.t.

α ∈ [α, α], k ≥ 0.

Let

F (α, k) = kα − ak, α ∈ [α, α], k ≥ 0,

and

k(α) =: arg max
k≥0

F (α, k).

One can easily get that

k(α) =
(α
a

)1/β
,

and hence,

V (α) =: F (α, k(α)) = β
(α
a

)α/β
,

where β = 1− α. Therefore,
α∗ ∈ arg max

α
V (α),

s.t.

α ∈ [α, α].

Now, consider the function

G(α) =: lnV (α) = lnβ +
α

β
ln
α

a
,

Since
dG

dα
=

1

β2
ln
α

a
,

and hence, function G is strictly decreasing for α < a and strictly increasing for α > a. It follows that

function G (and hence function V ) takes its maximum only on the end points, that is, α or α, it can

not take its maximum at any interior points, and this gives (14).

Su�ciency. Obvious. The lemma is proved.

Lemma 3. Let α ∈ (0, 1), β = 1− α, a > 0, b > 0. Then,

(i)

{(0, 0)} = arg max
K≥0,L≥0

(
KαLβ − aK − bL

)
if and only if (α

a

)α(β
b

)β
< 1;

(ii) there exists K∗ > 0, L∗ > 0 such that

(K∗, L∗) ∈ arg max
K≥0,L≥0

(
KαLβ − aK − bL

)
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if and only if (α
a

)α(β
b

)β
= 1.

Proof. Easy.

Now, we give the proof of Theorem 1.

Proof of Theorem 1. One can verify that the given solution is really an equilibrium, from which

the su�ciency follows. In the sequel, we prove the necessity. Suppose that (Ci; ai, bi,Ki, Li; pi, r, ω)i∈[0,1]
is an equilibrium.

For any i ∈ [0, 1], denote

ri =
r

pi
, ωi =

ω

pi
, ki =

Ki

Li
, xi =

(
aiki
bi

)ρi
, si = (γix)

δi ,

where

x =:
ω

r
.

We �rst solve the individual's optimization problem. This is a typical isoperimetric problem. By

the standard method of calculus of variation, we know that there exists a constant λ such that the

optimal path of the consumption satis�es the Euler equation

ρθiC
ρ−1
i − λpi = FCi =

d

di
FĊi = 0, a.s.

where F = θiC
ρ
i − λpiCi, and Ċi stands the derivative of Ci with respect to i, and hence, λ > 0, and

C1−ρ
i = µθiri, (15)

where µ = 1/(λr).

Now, we solve the �rm's optimization problem. We know that in equilibrium, for any i ∈ [0, 1], we

have

0 = max
ai,bi,Ki,Li,Yi

{Yi − riKi − ωiLi} , (16)

s.t.

Yi = ((aiKi)
ρi + (biLi)

ρi)
1/ρi ,(

ai
mi

)σi
+

(
bi
ni

)σi
= 1.

We �rst solve the embedded cost minimization problem:

Zi =: min
Ki,Li

{riKi + ωiLi} , (17)

s.t.

Yi = ((aiKi)
ρi + (biLi)

ρi)
1/ρi ,
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the solution for which satis�es

riKi = µi
(aiKi)

ρi

(aiKi)ρi + (biLi)ρi
Yi, (18)

ωiLi = µi
(biLi)

ρi

(aiKi)ρi + (biLi)ρi
Yi, (19)

for some Lagrange multiplier µi > 0, which depends only on ai, bi, Yi,and hence,

Zi = µiYi. (20)

From (18), (19), we get
riKi

ωiLi
=

(
aiKi

biLi

)ρi
=

(
ai/ri
bi/ωi

)τi
,

therefore,

ωiLi = µibiLi

(
1 +

(
aiKi

biLi

)ρi)1/ρi−1

= µibiLi

(
1 +

(
ai/ri
bi/ωi

)τi)1/τi

,

which yields

µi =

((
ai
ri

)τi
+

(
bi
ωi

)τi)−1/τi
. (21)

From (16),(17),(20) and (21), we have

1 = max
ai,bi

((
ai
ri

)τi
+

(
bi
ωi

)τi)1/τi

,

s.t. (
ai
mi

)σi
+

(
bi
ni

)σi
= 1,

the solution for which satis�es (
ai
ri

)τi
=

(
ai
mi

)σi
=

(
mi

ri

)δi
=

si
1 + si

, (22)(
bi
ωi

)τi
=

(
bi
ni

)σi
=

(
ni
ωi

)δi
=

1

1 + si
. (23)

And hence, µi = 1. Therefore, from (17),(20), and Yi = Ci, we get

Ci = riKi(1 + x−1i ) = ωiLi(1 + xi). (24)
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It follows that for any i ∈ [0, 1],

si =

(
ai
biγi

)σi
=

(
ai
bi
x

)τi
,

ki
xi

= x,

and hence,

xi =

(
ai
bi
ki

)ρi
=

(
ai
bi
xxi

)ρi
=

(
ai
bi
x

)τi
= si.

From (22),(23), we have

ai = mi

(
1 + s−1i

)−1/σi
,

bi = ni (1 + si)
−1/σi ,

ri = mi

(
1 + s−1i

)1/δi
, (25)

ωi = ni (1 + si)
1/δi .

From (15),(24), (25), we obtain

K1−ρ
i = µθim

ρ
i (1 + x−1i )ρ/εi−1.

Since ∫ 1

0

Kidi = K0,

then,

µ =
K0∫ 1

0

(
θim

ρ
i (1 + x−1i )ρ/εi−1

)1/(1−ρ)
di
.

Therefore,

Ki =

(
θim

ρ
i (1 + x−1i )ρ/εi−1

)1/(1−ρ)∫ 1

0

(
θjm

ρ
j (1 + x−1j )ρ/εj−1

)1/(1−ρ)
di
K0, (26)

Analogously,

Li =

(
θin

ρ
i (1 + xi)

ρ/εi−1
)1/(1−ρ)∫ 1

0

(
θjn

ρ
j (1 + xj)ρ/εj−1

)1/(1−ρ)
dj
L0, (27)

Dividing (26) by (27) in both sides simultaneously, and noticing ki = xxi and xi = (γix)δi , we get

k0 =
x1/(1−ρ)

∫ 1

0

[
θim

ρ
i

(
1 + (γix)−δi

)ρ/εi−1]1/(1−ρ)
di∫ 1

0

[
θjn

ρ
j (1 + (γjx)δj )

ρ/εj−1
]1/(1−ρ)

dj

.

And hence, the above x is just the z in (2). The theorem is proved.

The proof of Theorem 2 is similar to that of theorem 1, hence, omitted.
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Proof of Theorem 3. First of all, one can easily verify that the given
(
C∗i ;K∗ij , L

∗
ij ; p

∗
i , r
∗, ω∗

)
i=1,2,....,n,j=1,2

in the theorem is really an equilibrium. In the sequel, we prove the converse statement, that is, if

(Ci;Kij , Lij ; pi, r, ω)i=1,...,n,j=1,2 is an equilibrium, then, it must satisfy all the conditions in the the-

orem.

We consider two cases.

First case. For this equilibrium, there exists some t ∈ {0, 1, ..., n} such that for any i ≤ t, happens
i; for any i > t, happens i, there is no industry in which happens mixed technology.

By solving the individual's optimization problem, one can easily get that for any i ∈ {1, ..., n},

piCi = θi(rK0 + ωL0). (28)

By solving the �rms' optimization problems, one can get that for any i ∈ {1, ..., n},

r

pi
= αig

−βi
i ,

ω

pi
= Aiβig

αi
i ; (29)

where

αi = αi, i ≤ t;

= αi, i > t,

and βi = 1− αi, gi = Ki/(AiLi), and

Ki = Ki2, Li = Li2, i ≤ t;

Ki = Ki1, Li = Li1, i > t.

By the market clearing condition, we have that for any i ∈ {1, ..., n},

Ci = Kαi
i (AiLi)

βi , (30)

and

n∑
i=1

Ki = K0,

n∑
i=1

Li = L0. (31)

From (28)(29)(30), we get that for any i, j ∈ {1, ..., n},

θi
θj

=
piCi
pjCj

=
α−1i Ki

α−1j Kj

=
β−1i Li

β−1j Lj
,
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which, combining with (31), gives that for any i ∈ {1, ..., n},

Ki =
θiαi∑n
j=1 θjαj

K0, Li =
θiβi∑n
j=1 θjβj

L0. (32)

From (29)(32), we get that

ω

r
=

∑
j≤t θjβj +

∑
j>t θjβj∑

j≤t θjαj +
∑
j>t θjαj

k0, (33)

In this case, since for any i ≤ t, Ki1 = Li1 = 0, Ki2 > 0, Li2 > 0, and for any i > t, Ki1 > 0, Li1 > 0,

Ki2 = Li2 = 0, by Lemma 3, we have that

(αi
r

)αi ( β
i

ω/Ai

)β
i

≤
(
αi
r

)αi ( βi
ω/Ai

)βi
, ∀i ≤ t;

(αi
r

)αi ( β
i

ω/Ai

)β
i

≥
(
αi
r

)αi ( βi
ω/Ai

)βi
, ∀i > t.

Therefore,

σt ≤
ω

r
≤ σt+1,

which, combining with (33), yields that

k∗2t ≤ k0 ≤ k∗2t+1.

Second case. For this equilibrium, there exists some t ∈ {1, ..., n} such that for any i < t, happens

i; for the i = t, happens i; for any i > t, happens i.

By solving the individual's optimization problem, (28) still holds. By solving the �rms' optimiza-

tion problem, we get that

r

pi
= αig

−βi
i2 ,

ω

pi
= Aiβig

αi
i2 , i ≤ t, (34)

r

pi
= αig

−β
i

i2 ,
ω

pi
= Aiβig

αi
i2 , i ≥ t. (35)

And hence,
ω

r
=
βt
αt
kt2 =

β
t

αt
kt1,

βtg
αt
t2 = β

t
g
αt
t2 ,

which yields
ω

r
= σt.

Analogous to the above analysis, from (28)(34)(35), we get that for any i 6= t,

Ki = θiαi(K0 + σtL0),

Li = θiβi(K0/σt + L0),
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where

Ki = Ki2, Li = Li2, i < t;

Ki = Ki1, Li = Li1, i > t,

and

Kt1

αt
+
Kt2

αt
= θt(K0 + σtL0),

Lt1
β
t

+
Lt2

βt
= θt(K0/σt + L0).

By the market clearing condition, we get that

Kt1 +Kt2 = K0 −
∑
i 6=t

θiαi(K0 + σtL0);

Lt1 + Lt2 = L0 −
∑
i 6=t

θiβi(K0/σt + L0).

Therefore,

Kt1 =

∑
j≤t θjβj +

∑
j>t θjβj

αt/αt − 1

(
k∗2t
k0
− 1

)
K0,

Kt2 =

∑
j<t θjβj +

∑
j≥t θjβj

1− αt/αt

(
1−

k∗2t−1
k0

)
K0;

Lt1 =

∑
j≤t θjαj +

∑
j>t θjαj

1− βt/βt

(
1− k0

k∗2t

)
L0,

Lt2 =

∑
j<t θjαj +

∑
j≥t θjαj

β
t
/βt − 1

(
k0

k∗2t−1
− 1

)
L0.

And, obviously, in this case,

k∗2t−1 ≤ k0 ≤ k∗2t.

Now, by the same method, one can prove that any other cases are impossible. And this completes

the proof of the theorem.

The proofs of Theorem 4 and Corollary 7 are easy, hence, omitted.
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Appendix II. Supplementary Figures

Figure A1: Factor Returns in US
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